TEAM USER'’S GUIDE

Technical Note 343

November 1984

By: Lorna Shinkle
Computer Scientist
Artificial Intelligence Center
Computer Science and Technology Division

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

This research was supported by the Defense Advanced
Research Projects Agency under Contract N00039-83-
C-0109. The views and conclusions expressed in this
document are those of the author and should not be
interpreted as necessarily representing the official
policies or endorsements, either expressed or implied,
of the Defense Advance Research Projects Agency.

| Internetional

T LN S
77 TN NN

SRi

International
SN WA,
N P

333 Ravenswood Ave. Menlo Park, CA 94025
{415 326-6200 o TWX: 910-373-2046 Telex: 334-486

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
NOV 1984 2. REPORT TYPE 00-11-1984 to 00-11-1984
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Team User’s Guide 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

SRI International,333 Ravenswood Avenue,Menlo Park,CA,94025 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a. REPORT b. ABSTRACT c. THISPAGE 78
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table of Contents

1. INTRODUCTION
2. BACKGROUND

3. USING TEAM TO ACCESS A DATABASE

3.1 Getting Started

3.2 Simple Questions

3.3 The User Profile

3.4 Error States

3.5 More Complex Questions
3.6 A Few Linguistic Issues
3.7 A Concluding Comment

4. ACQUISITION

4.1 Acquisition Concepts

4.1.1 The Acquisition Window

4.1.2 The Sort Hierarchy

4.1.3 The Virtual-Definition Window
4.2 The Mechanics of Acquisition

4.2.1 The Basic Strategy

4.2.2 Acquiring Files, Fields, and Words

4.2.3 The Sort Editor

4.2.4 Entering and Editing Data

4.2.5 Defining a Virtual Relation

5. DOMAIN DESIGN

5.1 Judgment and Experimentation

5.2 Some Characteristics of an Effective Demonstration
5.3 The Database Structure

5.4 Defining Words

5.5 The Sort Hierarchy

5.6 Virtual Relations

5.7 Editing Data Files and Testing a Set of Queries

APPENDIX

Information From the Pkcont Domain

Figure 2-1:
Figure 2-2:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-8:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 4-10:
Figure b-1:
Figure 5-2:
Figure 5-3:

List of Figures

Two Classes of Users and the Components of TEAM
Processing Stages
Effect of the HELP Command
Sample Information About Peaks
Sample Information About Countries
Sample Output During Query Processing
The User Profile
Unknown-Word Error
The Acquisition Window
The Question-Answering Area for Worldc
The Sort-Editor Window
An Example of Equivalent Sorts
An Example of a Sort With Two Ancestors
Schematic Definition of Pkcont
Sereen Display After Saving an Acquisition
A Data-Editor Menu of File Names
A Menu of File Entries

Values For A Particular Entry

Diagram and Partial Sort Hierarchy for a Sample Virtual Relation

A Database File, Formatted for Editing
A File of Test Questions

o

12

14
15
16
19
28
29
33
34
35
38
38
42
43
44
a8
59
60

1. INTRODUCTION

TEAM (Transportable English Data Access Medium]} is a transportable natural-language
(NL) interface to a database. It is a tool of considerable power that enables the user to retrieve
data and elicit answers to queries by asking questions and giving commands in English instead of
a formal query language. Moreover, TEAM is not limited to any particular database, but can be
adapted to demonstrate natural-language retrieval in a broad variety of application domains.
The prototype TEAM software described herein was developed by the Artificial Intelligence
Center of SRI International to demonstrate the system’s capabilities and adaptive potential.

This user’s guide is designed to assist new TEAM users to learn about the concepts and
tasks involved in retrieving data and in preparing a demonstration for a new application area.
An effort has been made to illustrate some of the problems TEAM must solve in translating an
English question into a database query. However, the necessarily limited scope of this guide
cannot include a discussion of all the natural-language-processing issues addressed by the system;
our emphasis is on a practical, rather than theoretical, understanding of the concepts. Similarly,
while this guide cannot cover every detail of creating a new demonstration for TEAM, it does
provide a thorough introduction to the procedure to be followed and explains how to use the on-
line "help" provided by the system..

Other references on the subject of TEAM include two papers: "Transportability and
Generality in a Natural-Language Interface System," by Paul Martin, Douglas Appelt, and
Fernando Pereira, and "TEAM: An Experiment in the Design of Transportable NL Interfaces,"
by Douglas Appelt, Barbara Grosz, Paul Martin, and Fernando Pereira. In addition, a videotape
has been prepared that gives an introduction to TEAM and a demonstration.

This introductory manual is designed to be read in conjunction with actual use of the
system. While a casual perusal of this document may acquaint the reader with some of TEAM'’s
features, using the examples and suggestions as a practical guide to actually experimenting with
the system will prove a much more effective method of learning how to use TEAM and becoming
familiar with both its capabilities and its limitations. Much of this guide consists of comments,
descriptions, and other background information, but the user is frequently instructed to perform
some action as a learning experience. In the examples shown in the text, the portions printed in
boldface are typed or selected by the user; these portions may or may not appear in boldface on
the screen when TEAM is used. In the examples illustrated by figures, however, the type faces do
correspond exactly to the screen display.

2. BACKGROUND

TEAM is a system that allows its users to retrieve information from a database by stating
requests in English (which is considered a "natural” language because it is normally used by some
human beings to communicate with other human beings) rather than by encoding them in one of
the many formal query languages that have been specifically designed for data retrieval. This
chapter gives some background on TEAM, its goals and their implications, the two classes of
TEAM users, and the major components of the system. Our intention is to provide the user with
a perspective that will be helpful in reading the following chapters and in understanding TEAM's
capabilities and limitations. For a comprehensive and more technical discussion, see the papers
cited in the preceding chapter. :

To appreciate the achievements embodied in TEAM, one must first know two fundamental
facts about the system:

e TEAM is a research prototype, not a commercial product

e TEAM is a retrieval interface, not a database management system.

Each of these points is amplified below.

TEAM is the concrete result of basic research in natural-language processing; as such, it can
be used as a tool for demonstration and teaching. Because the research effort included concern
for the needs of users who are not linguists, TEAM has some elegant user-oriented features.
However, the problems that must be resolved for true natural-language processing (as opposed to
keyword processing) are very broad and difficult ones, and TEAM was developed and modified
over time as a vehicle for exploration of the attendant issues. While the TEAM project has
expedited significant advances in this area of research, TEAM is not a finished product that can
be utilized in a production environment. Consequently, users must be prepared to encounter
occasional difficulties in using the system.

Nor should TEAM users expect to find all the features of a database management system,
such as easy data entry, protection of data integrity during concurrent access, ability to embed
queries in a programming language, or efficient processing of large quantities of data. The only
data managenient feature that TEAM is concerned with is retrieval (although a basic data-entry
capability is provided), because the problems involved in retrieval through a natural-language
interface were sufficiently challenging to warrant a significant research project. Advances were
made in our understanding of the linkage between linguistic concepts and data concepts, as well
as in natural-language processing. In the future, this progress may provide the ba51s for creating
effective interface components of database management systems.

TEAM also embodies other consequences of the two project goals: natural-language
retrieval and transportability. Some implications of these goals are touched upon below.

Because TEAM is designed to accept questions in English and translate them into precise
queries on a database, extra processing (beyond that required for a formal query language) must
be performed by the system in at least two major areas:

e TEAM must resolve the linguistic issues inherent in translating an English sentence,
rather than require the user to indicate all data relationships and operators in precise,
unambiguous terms.

e TEAM has features that attempt to shield the user from having to know all the details
of the database structure (such as the abbreviated or coded names of data fields, or
whether more than one file is involved in a query).

Partly because of this extra processing load, the criteria for using a natural-language interface
such as TEAM in a worthwhile manner must be based on the following considerations:

e The questions that are typically asked of the system must be "properly” expressed in
a natural language such as English. First, typical queries must be "easy to say,"
rather than easy to program. Second, some questions should take advantage of the
power of a natural language, such as the ability (1) to express complex operations or
relationships in relatively few words and (2) to combine or modify requests in
numerous subtle ways. '

e The fact that the user already knows English, and so does not have to spend time
learning a different query language, is an obvious advantage. An interface like TEAM
is especially suited to the casual user who is willing to make the system do a great deal
more work to spare himself the time and/or frustration involved in learning a
language tailored to data retrieval. On the other hand, TEAM would not be
appropriate for running standard queries that are composed once but executed many
times. '

The feature of transportability, or TEAM’s potential for being moved to a new application
domain by a domain expert who is not a linguist, was a major factor in determining the design of
the system.

e From the processing standpoint, transportability requires that the internal
mechanisms used to resolve linguistic issues be completely domain-independent. This
means that no coding shortcuts could be taken to solve a particular problem for a
single domain.

e From the user’s perspective, transportability implies concern with the way in wkich
information about a new domain is "acquired” by TEAM. This includes care
regarding the user interface in general — apparent in such features as prompts,
command menus, and on-line "help" facilities, as well as concern with the way
linguistic information is elicited from someone who is not familiar with linguistic
theory and jargon — by using graphics, questions containing examples, and other such
techniques.

These points about the implications of natural-language retrieval and transportability have been
presented here as an essential preface to the actual process of learning to use TEAM. [t is hoped
that they will be reinforced by the examples and discussion in the following text.

It will also be helpful for you to know that there are two classes of TEAM users (the end
user and the domain expert) and to understand something about the system’s different

components. The diagram in Figure 2-1 shows the end user interacting with TEAM by entering a
natural-language query and then receiving an answer. The domain or database exper (drawn
wearing a wizard’s hat} engages in a more extensive interaction, since he must supply all the
information required by TEAM before it can respond to questions in a new domain, (In this
user’s guide, the term "domain” is used in two different but essentially connected ways: in a
broad sense, to denote an application area or field, or in a narrow sense, to denote a particular
application-related collection of data and linguistic information that has been supplied to TEAM
so that end users can query it.) The interaction between the domain expert and the system is
called acquisition, since it is the process by which TEAM acquires domain-specific information.

In Figure 2-1, the large square surrounds the parts of TEAM that are involved in
translating a query from English into a query language. The three major components are
represented by rectangles. The NL processor and the schema translator are within the square
because they are involved in translating a query, while the acquisition component is outside the
square because it does not participate in query translation. Within the query translation square
are several ovals, which represent categories of information used by TEAM. Note that the
grammar rules are independent of the acquisition process, while the other information is at least
partially dependent on any specific domain.

TWO CLASSES OF USERS

08 EAFERT I
é“;. ACQVISITION

COMPONENT

\

’ CENCEMMIAL
SNeMn
GRAMFIAR,
Rureg D2
] ScHaM A
ML 1
PRoCesSDR, &ﬂ&ﬂ
A
"
3-"/ K.qmﬁsr-muﬁ. py
& ——— | o3
g(. SYSTEM

V
ron ArSLIER.
@EHD vSER. / ‘

Figure 2-1: Two Classes of Users and the Components of TEAM

The actual processing of the query, once it has been translated into a formal query
language, is accomplished by a separate software package called SODA. (The words "TO DB
SYSTEM" in the diagram reflect the action of sending the query to SODA). SODA was
developed during previous work at the Artificial Intelligence Center to provide a standard

relational interface to a variety of database systems. The demonstration version of TEAM uses
an "in-memory" version of SODA (which keeps tables of data in the Lisp Machine memory) as
the formal query system to which the natural-language queries are translated.

The NL processor, schema translator, and SODA are diagrammed again on the right side of
Figure 2-2. The left side of the latter shows the stages a query goes through as it is processed,
starting with the input sentence and ending with the answer. It is not necessary to completely
understand these processing stages before one can use TEAM, but a little familiarity with the
terminology would be helpful.

Input Sentence
Yorphema List
Parse ML Processaer
Logical Form
Simplified
Logical Fora
Schema Transglator
SGDA Query
SGDA
Answer

Figure 2-2: Processing Stages -

The NL processor first tries to parse the sentence to determine its basic grammatical
structure. In the process, it looks up the English words in its lexicon (or vocabulary list} for the
domain and transforms them into "morphemes,” which are the smallest units of meaning in
linguistic analysis. (For example, the NL processor will transform the word "“are" into the pair of
morphemes "PRES2 BE," meaning the present plural of the verb "to be.") If there is more than
one morphological analysis of a word, the morpheme list will be shown a corresponding number of
times. {(For example, a query that uses the word "more* will have at least two morpheme lists,
one with the morpheme "ER MUCH" and one with the morpheme "ER MANY.")

If TEAM is successful in parsing the sentence, it produces one or more parses (or parse
"trees"), and ranks them according to likelihood. The NL processor then applies "semantic,"
"pragmatic," and "scoping" routines to the top-ranked parse to arrive at a "logical form," which
represents TEAM's understanding of the sentence’s meaning in terms of the concepts of the
application domain. If the top-ranked parse fails during any of the further processing, TEAM
then tries to transform the next best parse into a logical form.

The logical form is simplified before it is turned into a formal query; this simplification
removes nuances of language that are too complex for the current version of the schema
translator. It is then the task of the schema transiator to transform the simplified logical form
into a SODA query. The schema translator is the only part of TEAM that is written in
PROLOG, rather than LISP. In the demonstration version of the system, SODA processes the
query using the in-memory database, and the answer is returned to the user.

The foregoing briel explanation of TEAM’s components and processing stages concludes this
background presentation. As mentioned earlier, the references given in the preceding chapter
contain more information about TEAM {rom the theoretical perspective. The following text
introduces various features of the system, with Chapter 3 emphasizing the end user and Chapters
4 and 5 focusing on the domain expert.

3. USING TEAM TO ACCESS A DATABASE

This chapter is oriented primarily toward the TEAM end user, who will ask questions in
English regarding the contents of a database. The discussion and examples are intended to
provide him with an introduction to two aspects of the system: mechanics and concepts. Thus,
this chapter includes not only instructions and hints on using TEAM, but also explanations and
examples to help the user perceive some of the underlying linguistic issues and problems.

This chapter also serves as an introduction for the domain expert, since the process of
adapting TEAM to a new domain requires a solid understanding of the system’s general power
and limitations, as well as of the specific ways in which TEAM may be employed in the new
domain. Qur subsequent discussions on acquisition and demonstration design will build upon the
concepts highlighted in this chapter. '

As mentioned in the introduction to this user's guide, one cannot learn to use TEAM simply
by reading. The descriptions and examples provided here are designed to guide the user through
the process of becoming acquainted with TEAM, but it will be essential for him to actually apply
the examples in practice — to experiment with the features of both TEAM and the Lisp Machine
environment in which it runs.

3.1 Getting Started

Since TEAM currently runs on a Lisp Machine, the TEAM user must understand some
features of the Lisp environment. Those users who are not familiar with the Lisp Machine
features should consult either a local expert, the Lisp Machine Summary from Symbolics, or a
similar document for the appropriate machine. (A few comments are provided here, but they are
intended as guidelines, not as a full introduction to a Lisp Machine.) In using TEAM, it will be
important to do or know about the following:

e Find out how to get access to a machine, start it, log in with a user name (your own
or one you have permission to use), and log out. Instructions for powering up the
machine, booting it, and logging in and out are included in the Lisp Machine
Summary, but there may also be local practices (such as leaving the machine on even
when it is not in use, but reducing screen brightness).

s Learn how to load and start TEAM on the machine you are using. Since this
procedure can vary, it is not documented here; check the instructions that came with
TEAM or consult with someone who knows about running TEAM at your site.

® The Lisp Machine Summary explains the layout of the screen, including the status
line at the bottom. A code on the status line indicates whether the machine is
running or waiting for the user to type something.

e The Lisp Machine Summary also describes the mouse, which is a rolling device used to
move a cursor on the screen; it has three buttons on top that can be clicked to issue
commands. The effect of clicking one of the buttons will depend on where the mouse
cursor i3 on the screen at the time. A prompt showing what mouse commands are

available at any given moment is located in the mouse documentation line or prompt
window, which is a one-line window in inverse video at the bottom of the screen. The
mouse cursor may take on different forms, including that of a small arrow or a circle
with a cross in it; occasionally the cursor will turn into an hour glass, indicating that
some especially time-consuming task is in progress.

A part of the screen (for example, a word in a menu of commands) may be
mouse-sensitive, as indicated by a box (hollow or filled) that appears around that
part of the screen when the cursor is touching it. The mouse commands that appear
in the prompt window at that time apply to the mouse-sensitive object highlighted on
the screen. By convention, one click of the leftmost mouse button is used to select a
mouse-sensitive object or command from the screen when there is no explicit
indication as to which button must be used. (Alsc by convention, in many .
circumstances pressing the rightmost button causes a menu of options to appear.)

The mouse can also be used to scroll the contents of some windows up or down. The
acquisition window, which contains still smaller windows that display lists of words,
will be introduced later. If a list is particularly long, only a portion of it will be visible
in the window at any one time. However, bumping the mouse cursor against the left
side of the window will turn it into a double-headed arrow. The mouse buttons can
then be used as indicated in the mouse documentation line to move the contents of the
window up and down.

A few keyboard conventions are important. The following mods fier keys are designed
to be held down while depressing other keys (in the same way that the SHIFT key is
used): CTRL (pronounced control), META, SUPER, and HYPER. The combination of
one or more modifier keys and another key is usually represented by a dash or dashes;
thus CTRL-X means hold the CTRL key down while pressing the "x" key, and
CTRL-META-ABORT means hold both the CTRL and META keys down while
pressing the ABORT key. The modifier keys are also often indicated in other texts by
one-letter abbreviations; thus, c-x is the same as CTRL-X.

In contrast to the modifier keys, those with white lettering —~ such as HELP, ABORT,
RESUME, SELECT, and FUNCTION - are meant to be pressed in sequence with
other keys, in the same way that the alphabetic keys are normally used. The four
examples below illustrate the use of these keys. As mentioned earlier, boldface
indicates sequences that are to be typed by the user.

o SELECT : (press and release the SELECT key, then press and release the
colon key) will select the main TEAM window, bringing it into view on the
screem.

o SELECT HELP will print a list of the keys that can be used with the
SELECT key and a description of what each combination does.

o FUNCTION C will change the state of the screen from black-on-white to

white-on-black or vice versa. Repeating this key sequence will “toggle” between
the two states,

10

¢ FUNCTION HELP will print a list of the keys that can be used with the
FUNCTION key and a description of what each combination does.

The RETURN key is used to signal the end of a TEAM input line. Whenever TEAM
is waiting for input from the user, a flashing cursor is displayed on the input line; it
will disappear as soon as the RETURN key is typed. The RUBOUT key can be used
to backspace over a typing error or the CLEAR INPUT key can be used to clear the
input line entirely. Some simple commands for ZMACS, the Zetalisp editor, can also
be used to edit the input line, but the cursor must be returned to the end of the input
line. (An introduction to ZMACS is presented in the Lisp Machine Summary.)

e The Lisp Machine Summary section on path names describes the components of a
directory or file name on the Lisp Machine. TEAM requires a path name when an
already established domain is loaded by a domain expert or an end user, as well as
when a domain is saved by a domain expert.

s The Lisp Machine Summary includes other helpful information, such as how to
recover from errors and frozen states. Anyone unfamiliar with Lisp Machines is
encouraged to read it through before using TEAM.

Once TEAM has been loaded and started, the main TEAM window will appear on the
screen. Figure 3-1 shows this window (with the result of the HELP command displayed). If it
does not appear, type SELECT : to bring it into view. Note that the prompt window contains
the words Type an Engligh query or aselect a command from the menu, as shown in Figure 3-1.
The prompt TEEAM > appears on the screen to indicate that TEAM is ready to accept a question;
the cursor is in the form of a circle with a cross inside it. The main TEAM menu extends across
the top of the screen (in inverse video) and contains the following commands:

ACQUIRE
SAVE
LOAD
PROFILE
RESTORE
EDIT
DDBG -
HELP
QUIT

Each command is mouse-sensitive, so touching it with the cursor will cause a box to appear
around it and a sentence to appear in the prompt window at the bottom of the screen.

Positioning the cursor over the HELP command and clicking the leftmost button once will
cause TEAM to print a message on the screen explaining what each command does, as shown in
Figure 3-1.

The ACQUIRE, RESTORE, and EDIT commands are for use by the domain expert rather
than the TEAM end user, so they will be covered in Chapter 4. The DDBG command calls the
Diamond Debugger, which is used to examine and edit parse trees (TEAM'’s internal

11

»
qLRnNSPURTHBLE ﬁliGL!SH DATA %CCESS 1EDIUH
TUGRVE . LORAD . . PROFILE RESIDRE . - EDIT OOBG

Heteome Lo S50 Intermetional’s 1ERY svitens,

You cam tyoe e netural languesge Query, or mousk ane of the cormendy in the nenu nae~ the
ton of the wcraxn. The menu comnands are defineg as Followes

AZSUIRE ~ Aequire & new relation in tha detabaxe

SAVE - Ssve the state of TERN on o file that can br reloeded lakes

RGAD - Load & praviously yaved File

FPOFILE - Seb a variatv of paranttery covcarning the snount end typw of (nfoenstion
displayed .

[EDIT « Edit the entrigy in a datsbase Tile -

[PESIORE = Restore FIAM to ity initisl state

208G - Enter tne DIAMOMD debuguer

[MELP = Print this mesvage

GULT -~ Recurn to whetever you wary doing before

1ERR>

Figure 3-1: Effect of the HELP Command

representation of the parsed query); it is intended for use in debugging and changing TEAM itself,
and is not documented in this user's guide.

The PROFILE command allows the user to specify what he wants TEAM to print on the
screen as it is processing a question; this command will be explained in Section 3.3. The QUIT
command simply leaves the TEAM window and returns to the preceding window.

SAVE and LOAD are opposite commands: SAVE preserves a TEAM state as a collection of
files; LOAD, on the other hand, retrieves those files and returns TEAM to the state it was in
when they were saved. The SAVE command will not be used until Chapter 4, since the domain
expert employs this command after he has given TEAM the information it must have to answer
questions related to a particular database. The LOAD command, however, may be used by both
the domain expert and the end user, since it prepares the system either for further work on a
domain or for questioning.

The RESTORE command is used to return TEAM to a pristine or "empty" state, that is,
to the state it was in when it was first started. This may be necessary when changing states or
domains. Normally the LOAD command, as it loads a new domain, will "write over" the
information that was specifically related to a previous domain. However, it is possible for TEAM
to get into a disrupted state (for example, when a domain expert tries to save an inconsistent

domain); in that case, the RESTORE command must be given before a new domain can be
loaded.

12

Now load the sample domain called pkcont that was supplied with TEAM. (This domain is
concerned with mountain peaks and countries.) To load the TEAM state, select the LOAD
command from the main menu (by positioning the cursor over the command until the box
appears and then clicking the leftmost button once). TEAM will respond by asking for the path
name of the file to be loaded. Answer by typing the path name >teamdemo> pkcont.acq,
followed by the RETURN key, as shown:

What file do you want to load? >teamdemo>> pkcont.acq

If this path name does not work, check the instructions that came with the system or ask a local
TEAM user what path name to use. (No machine name is included in the path name in this
example, since it is assumed that the “teamdemo” directory is on your machine; if it is located on
a different machine, include the identifier for that machine at the front of the path name.)

The file specified for the LOAD command should always be of type ".acq", indicating that
it is an acquisition file produced by TEAM via the SAVE command. In fact, the ".acq" at the
end of the path name is not necessary, since the system will supply it. TEAM will also load all of
the database files (that is, the files with type ".db") that are needed for the state being loaded;
the acquisition file tells TEAM which files are needed. In this example, peak.db and woridec.db
will be loaded.

After TEAM has successfully loaded the files, it will momentarily flash a window on the
screen that contains the acquisition information -- then display the main window with a clear
screen and the TEAM > prompt. It is now ready to answer questions about the sample domain.

3.2 Simple Questions

To use TEAM effectively for retrieving facts from a database, one must have some idea of
what that database is about. This is true despite the fact that a natural-language interface is
most suitable for those who want to get information without knowing much about the database
structure and without any knowledge of a formal query language. TEAM does several things to
make it easier for the novice user to ask questions, but it is obviously impossible for TEAM to
convert a question about cities (for example) into a database query if the database doesn’t contain
any information in that category.

[deally, a database management system with a natural-language interface would also have a
“"help" facility that would allow users to find out which databases contained information of
potential interest to them. However, because TEAM was designed to address the specific
problems of the retrieval interface, rather than all those entailed in an integrated system, the user
must know what kinds of information a database contains before he tries to query it.

In the case of the sample domain that was loaded, there are two types of things that one
can get information about: peaks and countries. Each peak has a name, a country, a height, and
an indication as to whether or not it is volcanic. Each country has a name, a continent, a capital,
a population, and an area. Figures 3-2 and 3-3 summarize this information in tabular form to
make it easier to refer to. They also show some sample values from the database.

13

Hame Coantry Height Yolcanic?
Fuji Japan 12028 Y
Kyuchevekaya Usse 16250 Y
Ammaparna Nepal 25504 N
Kanchanjungs Indin 28208 N
Q Pakistan |50 N
Everest Nepal 20028 N
Mattarhorn Switzerland 14500 N
Kilimnjaro Tanzanis 18340 Y
Mcnt Blanc France 15771 N

Figure 3-2:

Sample Information About Peaks

Hame Cantinemt Capital Population Aren

Chira Asia Beijing $58230000 3891502
India Asia New Dalhi 38390000 1229737
Usse Asia Yoscow 258930000 8847250
UsA Sarth America Yaghingten 219454000 1256000
Britain Exrope Lewden EEE20000 4200
Nepal Avia Kathmandm 13420000 54382
Japan Asia Takyo 114900000 143574
Switzerland Eurcpe Barn A340000 15041
Tanrania Mrica Dar-Es-Salaam 16070000 333708
France Exrope Paris 53280000 211000

Figure 3-3:

14

Sample Information About Countries

To introduce the basic mechanics of querying TEAM, this sectiou starts with a few
questions that are very simple. Try typing the following sentence after the prompt 1o the main
TEAM window:

TEAM> what are the countries

Note that there is no question mark at the end of the example and no capital letter at the
beginning -- TEAM ignores capitalization and does not require any punctuation except commas.
(INames of countries, capitals, and mountains are capitalized in later examples for the sake of
clarity, but this is not necessary.) Remember that the RUBOUT and CLEAR INPUT keys can be
used to correct typing mistakes, and be sure to terminate the input line by typing RETURN.

Figure 3-4 shows some of the text that TEAM may generate on the screen as it is processing
the query. What you see on your screen may differ, depending on the way your user profile is
set; this will be explained in the next section. Note that, before supplying the the answer to your
query, TEAM tells you to Type any character to proceed. This message gives the user an
opportunity to look at the processing output before it is overwritten by the system’'s reply. In
this example, the answer will be the list of countries in the world; this list will fill several
screenfuls.

TERH>uhat are the countriss

HHAT PRES2 BE THE -5 COUNTRY
enactly cne parse was found
(QUERY (WH THINGL (+COUNTRY+ THING1) (THE +COUNTRY+2 (+COUNTRY+ +COUNTRY+2) (EQ THINGL +COUNTRY+2)}))

HHAT IS THE UNIQUE COUNTRY?

Type any character to procesd
Legical Form transformed for DB:
(OUERY (WH THINGL {+COUNTRY+ THINGL) (SOHE +COUNTRY+2 (+COUNTRY+ +COUNTRY+2) (EQ THINGL +COUNTRY+2)))}

HHAT IS EACH COUNTRY?

tn

Soda Query:
((IN 8:$1 HORLDC) (7 (¥:$1 WORLDC-NAME)}))
\\\ Type any character to proceed

Figure 3-4: Sample Qutput During Query Processing

The next two sections will discuss the mechanics of setting the user profile and handling
various kinds of errors. The following sentences are simple ones to try while experimenting with
the profile options and the procedure for correcting spelling errors.

TEAM>show the peaks

TEAM>What is the height of each mountain in Nepal

TEAM>show the population of Asia’s countries

While experimenting, try using the following commands (when you see the TEAM>> prompt) to
repeat a query you have given before:

e CTRL-C will bring back the last question typed

o After CTRL-C has been used once, META-C can be used repeatedly to cycle through
the previous questions. '

Once the desired query appears, type the END key (or the RUBOUT key, followed by the
RETURN key) to signal TEAM to process it. The retrieved query may also be edited by using
the RUBOUT key or certain simple ZMACS commands.

3.3 The User Profile

The user profile, illustrated in Figure 3-5, is simply a list of control features that specify
what output TEAM should produce as a query is processed. When TEAM is started, it reads the
current profile specifications from a file, but the user can change them at any time by using the
PROFILE command from the main menu,

Choose valyes for these paraneters:

Break on language problen: Yes No

Display debugging printout: Yas Na

Proleg debug flag: Yes No

" INisplay logical form: Yes No

Di=play pseudo-Engiish for leogical forn: Yes No
Paus= after displaying logical forn: Yes No
Send query to databases: Yes No

Haxinun nunber of-logical forns to display: 1
Shou Soda query:-Yes No

Default directory for database: lorna
Urientation of DDBG uindowu: VERTICAL HORIZONTAL
Save this profiie to a file: Yas No

[Exit O

Figure 3-5: The User Profile

To understand the profile options, it is helpful to know what parts of the processing output
correspond to the processing stages that were diagrammed in Figure 2-2. The figure shows that
the NL processor transforms the query from English into a logical form, which is then passed to
the schema translator to be converted into a SODA query. Finally the query is passed to a
version of SODA, which returns an answer from the database.

Refer back to Figure 3-4 in the previous section, which shows an example of the processing
output. The NL processor produces the part of the output labeled "A" in that figure while it
turns the English sentence into a logical form. The first line, WHAT PRES2 BE THE -5
COUNTRY, shows the morphemes that were retrieved by looking up the words in the lexicon. A
sequence of morphemes is displayed on the screen as the NL processor tries to parse the sentence.
Although there is only one list in this example, multiple lists of morpbemes for a sentence are
possible. The second line in the diagram indicates that only a single parse was found. Usually
more than one parse is found and all are ranked by the NL processor. Only the number of
parses, however, is reported to the user.

16

The next output line gives the logical form that was obtained after semantic, pragmatic,
and scope processing of the top-ranked parse. TEAM then restates the logical form in
unambiguous but sometimes baroque English -- in this case, WHAT IS THE UNIQUE
COUNTRY -- to help the user decide whether the system is interpreting his query the way he
intended. The statement Type any character to proceed allows him to pause and look at this
part of the output before going on. The first logical form is the "true" one from the standpoint
of natural-language interpretation. However, the NL processor must simplify it for the purpose of
database access. The second logical form and its restatement in pseudo-English are also shown in
Figure 3-4, preceded by the line Logical Form transformed for DB. In this case, the second
logical form hardly differs from the {irst.

The SODA query, labeled "B" in Figure 3-4, is produced and then printed on the screen by
the schema translator. Once again, the statement Type any character to proceed causes a pause
before the processing output is overwritten by the answer from the database. (Sometimes, when
the processing output requires more space than one screenful provides, TEAM prints the message
MORE at the bottom of the screen. Respond by typing any character; TEAM will continue
its output at the top, writing over what is already there.)

Figure 3-5 shows four profile features that can be set to control some of the output
discussed above:

Display logical form: Yes No

Display pseudo-English for logical form: Yes No
Pause after displaying logical form: Yes No
Show Soda query: Yes No

Note that the current setting for each feature is displayed in boldface, while the alternative is
displayed in regular type. (This is typical of situations in which the user must chose among a
limited number of answers to a question.) The options that refer to the logical form actually
apply to both versions of the logical form.

Experiment with these profile options, combining them in different ways to see which
combination(s) you like. To change the profile, click the PROFILE command in the main
TEAM window. After a few seconds, the profile menu will appear on the screen. To change the
answer to any of the profile questions, position the mouse over the answer you want and click the
feftmost button; the selected answer will become bold, while the alternative will return to the
regular typeface. Once all the changes have been made, position the mouse over the bold square
nearest the Exit command and click the leftmost button. Then try asking TEAM a question to
see just how the output has been altered. The profile changes will remain in effect until you log
out of the machine or you change the profile again. To change the profile settings 2ssumed by
TEAM whenr it is started, use the PROFILE command to call up the profile menu. Set the
features the way you want them to be and then change the answer to the option

Save this profile to a file: Yes No

to Yes, as shown here. Exiting from the profile menu wili then cause the current profile settings
to be saved in the "team.init” file in your login directory; TEAM reads this initialization file
upon starting and sets the profile accordingly.

17

There is one profile feature that affects acquisition rather than query processing. TEAM
uses the directory name specified here as the default directory for the *.db" files:

Default directory for database: lorna

The domain expert has the option of changing the directory for a particular database file when it
is acquired. He can also change this profile option before beginning an acquisition so that the new
directory will be assumed for all the database files. This question is unlike those discussed
previously in that there are no options from which to choose. Just position the cursor over the
current answer and click the leftmost button; then type the new answer and a RETURN.

The other profile features are designed for use by people who change and debug the system.
You should normally leave the answers to these questions set as they are in Figure 3-5. However,
you might at some time want to change the replies to these two questions:

Send query to database: Yes No
Maximum number of logical forms to display: 1

A negative answer to the first question will cause TEAM to translate queries but not send them
to be processed by SODA. As a rule, this is useful only for debugging a new domain or TEAM
itself. TEAM uses the answer to the second question when more than one logical form is
produced for a given query; if, for example, the response to this question is 2, the top two logical
forms will be displayed (but only the top-ranked one will continue to be processed). Setting the
answer to -1 will cause TEAM to display all the logical forms. But be careful - there can
sometimes be a large number of them.

3.4 Error States

Although TEAM has proved that a natural-language interface is a viable concept, there are
times when errors occur or when TEAM is simply unable to process a query. Translation failures
and errors are possible for several reasons, including the following:

¢ As mentioned earlier, TEAM cannot process queries that refer to things it does not
have any information about.

¢ More generally, TEAM cannot process a sentence containing a word that the system
does not recognize.

e Unlike some "natural language" interfaces that are really keyword-driven, TEAM
cannot parse a sentence if parts of it are omitted -- or if the English used is inherently
incorrect or excessively casual.

¢ TEAM is a prototype designed to explore a difficult research topic and considerable

effort has gone into development of its user interface. Nevertheless, there are still
ways in which the system can be disrupted.

18

Usually, if TEAM canrot complete the processing of a sentence, it will issue an error
message such as Sorry ... unable to parse the sentence or semantics failed and then return to
the TEAM> prompt. However, here are five suggestions to assist you in a few other situations
that can arise: '

1. If TEAM finds a word it does not recognize, it gives a special kind of error message,
illustrated in Figure 3-6. The figure shows that the user is given the choice of typing
either

¢ SUPER-A or RESUME and supplying a new word, as in the example, or

*» SUPER-B or ABORT to cancel the query and return to the TEAM > prompt.

If the error was caused by a misspelled word, it is very convenient to be able to
resume the query without retyping the whole sentence. If the error was not caused by
a misspelling, try to think of a suitable word that TEAM has recognized before, or
abort the query and rephrase it without the apparently unknown word.

TEAM>shu the peaks

3»Error: The word SHH 13 not in the lexicon.

HORPH:
Arg @ (HORD-initialieation): SHH
a-A, =D Specify a different word to substitute {n the sentence.
a-g, @Ay Restart process TERH
@D Specify a different vord to substitute In the sentence.
Enter new word to substitute for SHH: show

SHOW THE ~S PERK
exactly one parse uas found
(IMPERATIVE (THE *PEAK+1 (+*PERK+ +PERK+l) (*SHOW +YOUs +SPEAKER+ «PERK+1)))

{(2SHOH «YOU+ +SPEAKER+ THE PERK).
Type any character to proceed

Logical Form transformned for DB:
(QUERY (WH «PEAK+1 (+PEAK+ +PEAK+1} T))

HHAT IS EACH PERK?

Soda (Query:
- [¢(IN #:¢1 PERK) (7 {(#:%1 PEAK-NAME)))
Type any character to proceed

Figure 3-8: Unknown-Word Error
2. If TEAM stops on an error break, displaying a message such as Help Mr. Wizard! and
waiting for user input (that is, Tyi appears in the status line at the bottom of the
screen), type RESUME to continue processing the sentence and get back to the
TEAM> prompt. Then check the user profile and change the apswer to the question

Break on language problem: Yes No

to No, as shown here. This option should always be set to No, since it was designed to
be used by the system builders.

19

3. If any other kind of error occurs during processing and there is a consequent wait for
user input, (that is, Tys appears in the status line), type ABORT to abandon the
sentence and get back to the TEAM > prompt. If necessary, type repeated ABORTs
until the prompt appears. If the system returns to the Lisp Listener window, use the
SELECT : command to get back to TEAM.

4. If any kind of problem arises when TEAM is running (that is, when Run appears in
the status line), type CTRL-META-ABORT to halt TEAM. When the system is
not waiting for input, the ABORT key alone will not trigger any response. CTRL-
META-ABORT would be useful, for example, if the status line showed that TEAM
was running -- yet nothing had appeared on the screen for some time; the system
might be caught in an error loop. CTRL-META-ABORT could also be used to signal
TEAM to abandon a query with an excessive number of parses. (TEAM attempts to
get a logical form from the top-ranked parse first; if that one fails, however, it will
continue to try each parse in turn until it finds one that holds up or it exhausts the
sequence of possible parses.)

5. If a problem arises, but none of these situations fits (that is, the status line shows
something other than Tys or Run), try consulting the Lisp Machine Summary section
on error handling or find a local user who can help. This anomalous condition is
probably not being caused by TEAM.

The next two sections introduce some complexities into the sample sentences. As you
experiment with similarly complex queries, there will be times when TEAM cannot process a
question, or when the answer or logical form seems incorrect. When this happens, try to restate
the question in a different way. Simplifying the sentence will help. For example, if you have
stated it in the past temse, try putting it into the present tense or, if it refers to several data
items, try leaving one of them out. However, remember that using "pidgin" English will not
kelp, since TEAM will not be able to parse the sentenece if it is not grammatically correct. (The
system will process some commonly used patterns of speech even though they are not strictly
correct. This relaxation of the rules does not extend, however, to slang, careless constructions, or
“telegraphic speech.")

3.5 More Complex Questions

In the foregoing discussion, the point was made that TEAM must recognize the words in a
query. It will recognize and know how to process certain lexemes that are built into its
vocabulary, such as the, sn, or the verb to be; these words are so basic to English that they are
likely to be used in questions for any database domain. Once a specific domain has been loaded,
TEAM will also recognize and know how to process other words -- those that TEAM learned
about or acquired when the domain expert established that particular domain. This ability to
acquire new words for a new domain is a direct result of the design goal of making TEAM a
transportable system.

In the simple queries suggested in Section 3.2, the words used were those in TEAM's basic
vocabulary, those that referred to the objects in the database (peaks and countries) and the data
stored about them (name, area, height, and so forth), and the names “Asia” and “Nepal," which

20

TEAM learned from the actual data in the database. However, the domain expert can supply
adjectives related to such numeric data items as high (related to height), large and small (related
to area), and populous (related to population). The end user can then ask questions that compare
data items with one another by using the comparative and superlative forms of these adjectives
{higher, highest, less populous, least populous, and so forth). In addition, the domain expert can
define verbs that interrelate parts of the database, such as cover (as in "a country covers an
area"). The end user can then ask questions incorporating these verbs.

Since the examples given here were acquired by TEAM for the pkcont domain, you ¢can ask
the following questions:

TEAM> which countries are more populous than Argentina
TEAM> what is the largest country in Asia
TEAM>> is the smallest country the least populous

TEAM> what is the area covered by each country with a population
more than 1000000

TEAM> how high is the highest peak

Although acquisition will be discussed in the next chapter, it is worth mentioning here that
one goal of the domain expert is to define enough words so that the end user will not get
exasperated by asking a lot of queries that TEAM cannot process. On the other hand, the words
should be ones that are likely to be used, since it serves no purpose for TEAM to acquire a large
domain vocabulary il many of the words will never actually appear in queries. It is probably a
good idea to supply the end user with sample questions or a list of words that are defined in the
domain, just as it is necessary to supply some information about what the database contains. (It
might also be advisable for the end user to learn how to look at the acquisition window. One can
bring up the acquisition window and, without changing anything, look at the words that are
defined; the ABORT key will then return control to the main TEAM window without any
unnecessary processing being performed.)

One further consequence of TEAM's transportable design is the fact that the linguistic
information acquired must be gathered in a manner that is natural to a domain expert who is not
a linguist. This will become more obvious when examples of the acquisition process are discussed,
but it is instructive for the end user to realize that words vary in their usage and that TEAM had
to elicit from the domain expert all the information it utilizes to interpret correctly the meaning
of the end user's sentences. The next section highlights a few of the natural-language-processing
problems that TEAM attempts to solve, and the accompanying examples illustrate some of the
different ways words that are ostensibly the same can be used in English.

21

3.8 A Few Linguistic Issues

A number of problems arise in natural-language processing that have to do with
interpreting implicit or imprecise information in a sentence. ln a formal query language, the user
is required to state all relationships precisely, identify all items explicitly, and use each command
or portion of a command in exactly the way it is specified. In English, however, as in other
natural languages, people constantly rely on the listener’s subconscious awareness of the various
ways in which words may be used, as well as on his ability to perceive implicit interconceptual
relationships and supply "missing links" from the context of the conversation or from his
knowledge of the world. Understanding one’s native language may seem to be a relatively simple
task — but it seems so only because it is easy to forget how much one has learned since birth that
contributes to this ability.

This user’s guide certainly cannot examine all of the issues involved in natural-language
processing, even from the end user’s point of view. However, a few of the problems that must be
taken into account can and should be touched upon here. Three broad topics are mentioned:
knowledge about how words may be used, connections among the various types of things in the
database, and sources of ambiguity. One or more examples, drawn from the sample domain
about mountains and countries, are given to illustrate each topic or subtopic.

Each of us possesses a great deal of knowledge as to how different kinds of words can be
employed in English; this knowledge now appears to us to be "built in," but in fact we learned it
over the course of many years. TEAM also has built-in information about some different
categories of words and how they can be applied to diverse types of data in any given database.
It is this built-in knowledge that enables TEAM to acquire words and characteristics about the
pkcont domain, and then tc handle the following situations.

s As a simple example, take the fact that in English it is reasonable to compare numeric
data like populations by using the comparative and superlative forms of adjectives.
On the other hand, it is not reasonable to compare names of continents in any way
except by equivalency. This contrast can be seen in the following sentences:

TEAM> is the area of Japan greater than 100000 square miles

TEAM> is Asia the continent of Japan

¢ Figure 3-2 showed that the data indicating whether a peak is a volcano are
represented by simply a "Y" for yes or an "N" for no. This is what is called a
feature \n TEAM; there are several ways one can talk about whether a peak has this
feature or not. All of the following sentences will be translated into database queries
that include a test for "Y":

TEAM> is Everest a voleano
TEAM> which voleanic peaks are higher than 15000 feet

TEAM> does K2 have volecanism

22

TEAM> can the highest peak in North America erupt

e One very common habit in English is to use the name of something when one really
means the thing itself, or vice versa. For example, the sentence

TEAM> show the countries

uses the word “countries" as shorthand for "the names of the countries." However,
the sentence

TEAM> what is the area of Kenya

uses the name "Kenya" to represent the country known by that name. Normally
people make this substitution of name and thing unconsciously but a system like
TEAM must distinguish between the two and yet accept sentences that use one in
place of the other.

Often sentences in English relate one type of object or concept to another. TEAM can
interpret questions of this kind correctly if the connection is explicit in the question and/or can be
derived by the system from information that was supplied by the domain expert. Perhaps the
simplest connection is between an object such as a peak and a property of that object such as its
height. When the user asks

TEAM> what is the height of Everest

he is making such a connection. The following sentences all depend on somewhat more complex
connections between data about peaks and data about countries:

TEAM> what peaks are contained in each country in Asia

TEAM?> does the least populous country in Europe contain any
volcanos

TEAM>> show Asia’s highest volcano

TEAM> what volcanos in North America are higher than every
volcano in Asia

The last broad topic considered is ambiguity. This presents difficult problems for TEAM,
since human listeners so often resolve ambiguity by context, shared associations, or other methods
that allow them to “know what you mean.” TEAM tries to resolve three major types of
ambiguity: syntactic, semantic, and scoping.

Syntactic ambiguity arises when there is more than one way to parse a sentence. A classic
example of this category is [saw the man in the park with a telescope. In one context, this

23

could mean that park in the statement was the one with a telescope in it. In a different context,
however, it might mean that the speaker saw the man through a telescope. In a third context, it
could be that the man referred to in the statement had the telescope. The following example in
the sample domain shows two queries that differ by only one word, yet are parsed very
differently: ‘

TEAM> is the highest peak in Europe

TEAM> is the highest peak in Europe volcanic

A common type of semantic ambiguity involves different meanings for the same word.
TEAM can handle a limited amount of this type of ambiguity, but will become confused if the
same word has too many meanings. In the sample domain, the word Kenya is both the name of a
peak and the name of a country. Here are two sentences using the different meanings:

TEAM> how high is Kenya

TEAM> how populous is Kenya

TEAM invokes a number of rules to resolve ambiguity regarding the scope of such
quantifiers as a, any, some, e¢ach, and every. Consider the following queries:

TEAM> show the height of each peak in Asia

TEAM> show the height of every peak in Asia

The use of each in the first query leads TEAM to give peak a wider scope than height, so the
interpretation becomes “for each peak in Asia, show the height." In translating the second query,
TEAM must decide whether every should trigger the same interpretation as each, or whether it
should be treated like all; in the latter case, height is given the widest scope and the query is
taken to mean “show a height such that it is the height for all the peaks in Asia." Because of our
knowledge of the world, we know that a single height for all the peaks is a nonsensical
interpretation, but TEAM must try to resolve the ambiguity by other rules, using only the
context of the sentence. As it happens, TEAM makes the wrong choice for this query. (Since it
does not find a height equal to the heights of all the Asian peaks, it returns the answer There are
none.) As another example of the ambiguity of every, suppose there were a domain dealing with
people who had climbed mountains. The query "who has climbed every peak higher than 15000
feet" might be asking for a list of the climbers of each peak in that category, but it is more likely
to be a request for a single person who has climbed all such peaks.

3.7 A Concluding Comment

Before leaving the end user's view of TEAM, it is appropriate to emphasize that the
natural-language-retrieval approach exemplified by TEAM is particularly suitable for some types
of queries, but particularly unsuitable for others.

24

TEAM allows the user to state questions in a language he already knows, placing upon the
system the burden of interpreting these questions correctly with respect to the defined domain.
As long as the questions the user wants to ask can be stated relatively easily in English, the
advantages of having such a capability are obvious and potentially significant. From the
examples shown in the two previous sections it should be apparent that many queries, both simple
and complex, can be phrased naturally in English by the user. However, some queries are not
suitable for a natural-language interface. For example, certain queries are most easily expressed
in terms of formulas or logic, using phrases such as let z = ... or i f y implics z then The
ability of a system to translate English sentences into precise formalisms is not applicable to such
queries, since they can be more easily defined in precise terms from the start. Other queries are
relatively easy to express by means of special-purpose operators available on certain database
management systems (such as sum all, scan, or order by ...), especially if the user is accustomed
to thinking in terms of such operators. Sometimes it is difficult to compose sentences that
express these queries in a way that allows TEAM to translate them into SODA queries.
Admittedly, this is a constraint on the types of interrogatives and imperatives that can be
handled — but it is not a limitation on natural-language interfaces in general, since the origin of
the problem is typically in the restricted set of SODA operators rather than in the system's
natural-language-processing capabilities.

25

4. ACQUISITION

We now turn from the end user to the domain expert and begin the discussion of
acquigition, the process by which TEAM acquires information about the structure of the
database and the meaning of words in a particular domain.

Making TEAM work in a new domain is not a cut-and-dried task that can be accomplished
by following a prescribed formula. It requires not only an understanding of the fundamentals of
acquisition, but also considerable effort in designing and testing the new domain’s structural and
linguistic characteristics. To make it easier to learn about TEAM, the basic concepts and
mechanics of acquisition are introduced in this chapter, using a sample domain that has already
been designed. In the following chapter, we shall consider various issues in domain design and
offer suggestions regarding methods that may prove helpful.

The sample domain used here, which involves mountain peaks and countries, is the one the
reader is already familiar with from the preceding chapter. The first major section in this
chapter (Section 4.1} explains how to browse through the acquired information for this domain,
and acquaints the user with various aspects of acquisition. Section 4.2 then outlines the
mechanies of building the sample domain from a pristine TEAM state. This dual view allows the
user to become comfortable with the essential ideas underlying acquisition and with the sample
domain before trying to start building a domain himself.

This user’s guide does not have sufficient scope to include complete directions for building
the sample domain. It does provide a general outline and hints on how to use TEAM to acquire
the domain. But it also relies on the user's ability to learn from the example of a completed
domain and to make use of the self-help facilities available. TEAM offers extensive on-line
“help" information through menus, the prompt window, and expanded versions of the guestions
asked by the system. In addition, much information about the domain is included in Appendix A
for convenient reference during the building process. Other sources of explanation and examples
on the subject of acquisition are the papers and videotape referred to in Chapter 1.

Throughout this chapter, the mouse will be used to select mouse-sensitive options or objects
on the screen, to give commands, and to scroll windows. If you are not familiar with these
actions, please refer back to the pertinent remarks in Section 3.1 and to the Lisp Machine
Summary,

4.1 Acquisition Concepts

This section will take you on a "guided tour" through the sample domain, pkecont, whick we
loaded in Section 3.1. Although the previous chapter made use of the main TEAM window only,
the acquisition information is available in other windows without any further loading. The only
part of the acquired information that is not reviewed in this section is the actual data. The
insertion and editing of data, however, will be discussed in Section 4.2.

27

4.1.1 The Acquisition Window

To move from the main TEAM window to the primary acquisition window, select
ACQUIRE from the menu at the top of the screen. Since the pkcont domain was loaded
previously, the screen should look like Figure 4-1.

ey SORT-EDLTOR . ov ooy
o Henu
A PERK uORLOC

reld Rrny
PERR-COUNTRY PEAK=HEIGHT PEAK-HRME PEAR-VOL
PRCONT -GONTINENT PACONT-NAME WORLDC-AREA MORLDC-CAPITAL
BiORLOC -CONT TMENT WORL OC -HAKE WORLDC-POP

ord Menu .
HIEE# in! .- CAPITAL (nl COMPACT (wdi)
CONTALN (v] COHTIMENT ¢n) COUNTRY [nl
LOVER (vl ERUPT (v} EXTENSIVE {ud}]
LOVERN (1 HEIGHT (n} HICH (edj)
LNRGE tad;) LOFTY tedy) LOW tadj}
HOUHTATH ¢n) N (n) HRHE (n)
HATION (n] HOHVOLCANTC (ed} PERE [n}

Fluestion Pnsuer ing fres

S1iew i oy BETIS AL S WFEA BG pndler O Eor.,
ITifvseza BElLrle Ll il v

Figure 4-1: The Acquisition Window

Like the main window, the acquisition window has a menu of commands at the top, in
inverse video. It contains the following commands:

SORT-EDITOR
VIRTUAL-DEF
NEW-RELATION
NEW-WORD
QUIT

Position the cursor over each command to see the resultant explanation in the prompt window.
All of these commands will be used in Section 4.2, but the SORT-EDITOR, and VIRTUAL-DEF
commands will also be executed in the subsections below to display other windows used during
acquisition. The QUIT command causes TEAM to update its internal state to be consistent with
the acquisition window; this command should be used to leave the acquisition window whenever
anything was changed during the acquisition session. If TEAM finds any inconsistency in the
domain during the updating process, it issues an error or warning message; otherwise, it returns
to the main TEAM window. The ABORT key can be used as a quick way of returning to the

23

main window if no domain changes have been made; this will hypass both the updating and the
consistency checking.

There are three areas on the screen that contain lists of names: the file menu, the field
menu, and the word menu. These areas are called menus because each contains a list of objects
(or more precisely, names of objects) that can be selected with the mouse. Move the mouse
around on the screen; note how the prompt window changes as the cursor moves from the empty
portion of the screen to any mouse-sensitive object.

The last area of the screen is the question-answering area. This area is used jointly by
TEAM and the domain expert in the process of defining a file, field, or word. Position the mouse
over the file object WORLDC and click the leftmost button. Questions and answers should
appear in the QA area as shown in Figure 4-2.

Huestiaon Hnswering HArea
File nama - WORLDC

Relation’'s statyus in tha databasa - YIRTUAL ACTUAL
LMFS pathnamae ~ >TEAMDEMO>WORLDC.DB

What is this ralation about? ENTITIES RELATIONSHIPS
Subject = COUNTRY

Fialds ~ NAME AREA POP CONTINENT CAPITAL

Primary kay sat ~ NAME AREA POP CONTINENT CAFITAL
Idan:ifying flalds — NAME AREA POP CONTINENT CAPITAL
Frenouns for fila subjact — HE SHE IT THEY

Figure 4-2: The Question-Answering Area for Worldc

Select objects from the file, field, and word menus and examine the QA area, keeping in mind the
following comments: '

e Both the questions in the QA area and the responascs to them are mousc-sensitive.
Position the cursor over a question and click the leftmost button to get an expanded
version. Use this on-line help facility extensively while learning about TEAM.

s The QA area for an already defined object shows the full list of questions and answers
that were involved in the definition process. However, when a new object is defined,
TEAM asks a few questions at a time. Once the user has replied to some of them,
TEAM will present further requests that are appropriate to the situation, as clarified
by the earlier questions. This is why two objects that are both of type "field" may
trigger different questions in the QA area.

¢ Some questions have a limited number. of answers, which appear as choices following
the question; the current reply always appears in boldface. Other questions have
answers that were typed in by the user (or supplied by TEAM, such as a path name);
these appear entirely in regular type.

29

e Whenever separate words are to be considered part of a multiword phrase (for
instance, "capital city") in an answer, the user must enclose them in parentheses in
the QA area. Even though TEAM sometimes removes the parentheses when it records
such an answer, the system still recognizes the compound. If the latter appears in the
word menu, it will have dashes between the words. Such phrases may be used in
queries as long as the words are consecutive; they do not require either parentheses or
dashes in a query. {The user may also choose to convert a phrase into a single "word"
himself by typing it with dashes instead of spaces and omitting the parentheses, as in
“square-meter.”) A multiword phrase, such as "capital city”, is essentially different
from multiple answers to a question, as illustrated by the list of adjectives "tall high
lofty," which might be supplied for the peak-height field. The latter should not be
enclosed in parentheses.

Use the mouse to display the QA area for various objects while reading or reviewing the rest of
this subsection.

Files

Figures 3-2 and 3-3 presented tables showing the kinds of information contained in the
pkcont domain. A file or relation in TEAM can be thought of as a table of data, similar to the
tables in these figures. The term file comes from the fact that database management systems
often maintain disk or tape files of related information; one or more of these constitute a
database. In TEAM, however, file is used interchangeably with relastion. TEAM follows the
relational model of database organization, and thus assumes that a database is a collection of
relations or tables — each of which contains data about a single kind of object or a single type of
connection between objects. The examples below will use the peak file, which corresponds to the
table in Figure 3-2, and the worldc file, which corresponds to Figure 3-3.

Both of these files contain data about things: in one case about mountain peaks, in the
other about countries. TEAM uses the relational database term entsties to refer to things that
are the subject of a file, and distinguishes between files about entities {that is, files that have
subjects) and files about relationships among the subjects of other files. If you display the QA
area for the worldc file, you will see that it is specified as a file about entities. Then click the
question What ia the file about and read the explanation regarding the two types of files.

Note also that TEAM asks for the subject, in singular form, and that it may or may not be
the same as the file name. TEAM adds the subject (not the file name) to its word menu, and will
thereafter be able to recognize that word in a sentence as designating an entry in that file.

There is one other file name in the file menu, pkcont. This file name is in italics in the
menu because it is a virtual file, which is used to express a connection between other files, in
contrast to the two actual files, which correspond to database files that actually contain data.
Subsection 4.1.3 looks at the virtual-file definition.

30

Fields

When defining a new file or relation, the domain expert must teill TEAM what fields it
contains. The QA area for worlde shows that each column in the table about countries becomes a
field in the woride file. The column or columns used to distinguish one entry in the table from
another are designated as key fields. TEAM puts each field name into its word menu, and
inserts the combination of file name and field name (separated by a dash) into the field menu.

However, TEAM must know more about the characteristics of each field before it can
properly interpret sentences using the field name. These additional facts are part of the implicit
information (the kind that human beings already know how to use) that must be acquired by the
system through its dialogue with the domain expert. Thus, even though the fields are pactially
defined in the QA area for the file, the fields have their own questions that must be answered.

TEAM knows about three basic types of fields that are used in different ways in English:
symbolic, arithmetic, and feature. A brief definition of each follows:

¢ Symbolic fields are the simplest type, in the sense that they are just names or
symbols. A value in a symbolic field can be retrieved or checked against another
value to see il the two are equivalent, but it cannot be used in any other way.
Worlde-name, peak-name, and peak-country are all symbolic fields (as are some others
in the sample domain). Most symbolic fields have character data in them, but a
numeric field would be symbolic if it could only be retrieved or checked against
another value for equality (for instance, a social security number).

¢ Arithmetic fields contain numbers that can be compared using the comparative and
superlative forms of adjectives (such as "higher" and "highest"). TEAM supports
three subtypes within the arithmetic type, each of which has different linguistic
properties. Peak-height is an arithmetic field that is a measure, and worlde-pop is a
count. The third subtype is date. Click the question about type in the QA area for
one of these fields to see an explanation as to the difference between them. Note also
that the domain expert specifies the adjectives that apply to each field. Each
adjective becomes a word recognized by TEAM, and its comparative and superlative
forms appear in its QA area. If the comparative and/or superlative forms are
irregular (such as “better" and "best"), the domain expert can correct TEAM's
assumptions in the QA area.

¢ Feature fields contain only an indication as to whether the file entry does or does not
have some arbitrary property. Peak-volis a feature field because it contains a "Y" if
the peak is volcanic, an "N" if it is not. TEAM supports several linguistic constructs
that refer to such a field: adjectives modifying the subject of the file (volcanic),
abstract nouns representing the property the subject has or lacks (volcanism), concrete
nouns representing subsets of the subjects that have or lack the property (volcano),
and verbs applied to the subjects that have or lack the property (erupt). The QA
area for peak-vol illustrates the way that TEAM acquires the information about the
possible nouns and adjectives for a feature field.

For a better understanding of these three types, look at the QA area for each of the fields in the
field menu. (The fields in italics are virtual fields from the virtual file pkcont.) Use the mouse to

get expanded versions of the questions asked for each type, and think about how the end user
would talk about the various fields.

Words

Most of the words TEAM adds to its vocabulary are acquired in the process of defining the
files and fields. However, it is also possible for the domain expert to define two other categories
of words: nouns and adjectives that are synonyms of words TEAM has already learned, and
verbs that relate file subjects and/or fields. All of these words must be related to things that the
system already knows about, so that an end user’s sentence can be translated into a database
query. One common use of the synonym capability is to define English words that are synonyms
for abbreviated or coded field names. In the sample domain, for example, "population" is defined
as a noun that is synonymous with the pseudo-word “pop.*

The verbs contasn and cover are both defined in the sample domain. You will note that the
sentence relating the verb to the database structure must be in the present tense and active voice.
Thus, even though the end user may say what area ¢a covered by Japan , the domain expert
must give the definition as a country covers an area. This and other points concerning the
definition of a verb are discussed in the chapter on domain design. Note also that TEAM
ascertains the linguistic properties of the verb by generating sentences that use the verb in
various ways and asking the domain user whether he perceives them to be correct English
sentences.

By defining files, fields, and words, the domain expert tells TEAM about the structure of
the database and what words are used to refer to it. However, it is also very important for the
system to know how the concepts represented in the database structure relate to one another.
Much of this information is kept in the sort hierarchy, which is the topic of the next subsection.

4.1.2 The Sort Hierarchy

In the context of TEAM, the term "sort” is a noun (derived from the technical term "a
many-sorted logic") that means a class or kind of thing. As an example of this usage, think of
the sentence This sort of padded chair is the most com fortable. The phrase "this sort of
padded chair" refers to a subcategory of the category of objects called chairs. It may overlap
with the subcategory of chairs that have rolling casters, but it is disjoint from the subcategory of
chairs that are not padded. In the process of learning language, human beings learn a great deal
about the categories of things in the world and how they are related to one another. TEAM must
absorb some of this information to interpret correctly sentences in a particular domain.

As part of the acquisition process, TEAM and the domain expert build a structure called
the sort hierarchy, which diagrams the manner in which the sorts of things referred to by file
subjects and fields are related to one another. To look at the sort hierarchy for the sample
domain, click the SORT-EDITOR command in the menu at the top of the acquisition window.
This will bring up the sort-editor window and display the top of the sort hierarchy, as shown in
Figure 4-3.

When TEAM is first started, it has a generic sort-hierarchy relating categories that have
particular meaning for the system because of linguistic constructions it recognizes. For example,

32

PAyrical-obfect ADITMEEf-ob et fagal-paraom

al lou borew wre nod ikt e -
Llrigarmd Lhzidsul LUsim La:

Figure 4-3: The Sort-Editor Window

if a question begins with the word "where,” TEAM will try to produce a logical form that gives a
subcategory of "location" as its answer. In contrast, if a question begins with "who," TEAM will
try to answer with a subcategory of "person™ or "legal-person." As files and fields are defined by
the domain expert, the system adds the names of the arithmetic and feature fields to the sort
hierarchy, underneath the appropriate nodes. Symbolic fields and the subject of each file must be
inserted into the sort hierarchy by the domain expert, since TEAM does not know where they
belong.

The top entry or "node” in the hierarchy is the most general category thing. Thing has
three subcategories or "children": phyascal-object, abstract-object, and legal-person. The arc
between the line to physical-object and the line to abatract-object indicates that these two
categories are disjoint. Because the arc does not include the line to legal-person, the latter may
overlap with either or both of the former categories. (A dot is placed on each line that is affected
by a disjoining are; a line that happens to touch a disjoining arc but is not affected by it will not
have a dot.} Some of the characteristics of the various nodes will be discussed in Chapter 5,
where the focus is on designing a new domain.

The mouse can be used to expand the sort hierarchy, showing where each of the subjects
and field names for the sample domain has been placed. The nodes in the hierarchy are mouse-
sensitive, and the type of box that appears around a node is significant: a hollow box indicates

33

that the node has children while a solid box means that the node has none. The children of a
node can be displayed by clicking the leftmost mouse button.

Some nodes will have two or more labels, which means that the sorts represented by these
labels are really identical. This is called an equivalence in TEAM terminology, and the two (or
more) labels are called equivalent or alias sorts. In translating a query into a logical form,
TEAM will always identify an equivalence by the top label in the list. The most common form of
equivalence is between the subject of one file and a field in another file that acts as a "logical
pointer" or reference to the subject of the first file. An example of this is the equivalence
between country and peak-country, shown in Figure 4-4. (Note that the equivalence is not
between peak-country and country-name, which are quite different sorts.)

TRING

phytical-chfect abstract-obfect legal-peron
avent locatien time fealer other-ady measare-onit legai-aby name quaiity Saqrire
commiry worlde-cdapital woplde -continens
prak-comiry pkeont-contrnent

Figure 4-4: Anr Example of Equivalent Sorts

Sometimes a c¢ategory or sort has properties that make it appear to {all beneath two nodes
in the hierarchy. If (1) the two nodes are not disjoint and have no disjoint ancestors and (2) the
resultant connections do not create a cycle {that is, no node is a parent of any of its own
ancestors), then the category in question may be a child of both nodes. In the sort diagram, a
category that is a child of two parents will appear with a solid line to one parent and a dotted
line to the other. The solid line indicates the path that was completely displayed with the mouse,
while the dotted line indicates the alternative path; there may be "hidden" nodes along the
alternative path. The person sort (shown in Figure 4-5) is an example of a category in the
sample domain that has two parents. The country sort exemplifies a category whose properties
suggest that it could be placed underneath two disjoint nodes: snansmate and location. In such
a case, the domain expert must make a choice based on the questions that an end user is
considered likely to ask.

To leave the sort-editor window and return to the primary acquisition window, click the
QUIT command at the top of the screen. Since nothing has been changed, the ABORT key
could also be used to abandon this window and return to the main TEAM window.

34

THING

e

Pphytical-odjeet adriract-objact lqal;pcr:oei

-
-
—
-
-
-
-

inanimate - h'ln'n; <creeture
perzan

Figure 4-5: An Example of a Sort With Two Ancestors

4.1.3 The Virtual-Definition Window

A virtual relation (or virtual file) defines a logical connection or correspondence between
two actual files. The domain expert defines a virtual relation so that TEAM can interpret
questions from the end user that depend implicitly on that correspondence.

For example, the field peak-country not only contains the name of the country each peak is
in, but also acts as a "logical pointer"” or reference to the country file. Consider these two
questions, both of which use this logical connection:

TEAM> what peaks are contained in each country in Asia

TEAM> show Asia’s highest voleano

TEAM can translate the first of these questions without having a virtual relation defined, because
the word country appears explicitly in the question and peak-country is equivalent to the subject
country in the sort hierarchy (as explained in the previous section}. However, the second question
does not refer to country. To allow TEAM to recognize that an implicit connection is involved,
the domain expert must define the virtual relation pkcont. The virtual relation can be thought of
as a way of telling TEAM that certain actual properties of a country (such as its continent)
should be considered virtual properties of the peaks in that country. {Of course, others should
not; for instance, the population of a country should not be considered the population of its peaks
as well.)

The virtual relation pkeont is defined in the same way that an actual relation is defined,
except for the following:

o The file type and field types are specified as "virtual" in the QA area, which causes
them to appear in italics in the menus.

e No path name is specified for the database file, since no data will be stored.

e The virtual field pkcont-name is defined similarly to peak-name, the key field of the
peaks file, and the pkcont-continent field is defined similarly to worl{dc-continent, a
nonkey field of the countries file.

e Once the file and fields have been defined, the various parts of the logical connection
between the virtual file and the actual files are specified schematically in the virtual-
definition window, as explained below.

Information peeded by the language-understanding part of TEAM is supplied by the definition of
the virtual file and fields. The schematic definition, however, supplies information needed to
process the database query. To see the schematic definition, click the VIRTUAL-DEF
command at the top of the acquisition window. This will bring up the virtual-definition window.
Then position the mouse over the PKCONT file name and click the leftmost button. This will
make the schematic definition of the virtual file appear in the window, as shown io Figure 4-6.

PECONT PEAK HORLOC

oecificatron of virtunl {relds Jor PELUNE relatsen
EPCTT -CCMTIENT : WARLES-CONTTHENT
PACCMT-RARE: FERK-NARE

irtue] Relotion Hecautsition

wlsct relation

Figure 4-8: Schematic Definition of Pkecont

Note that the virtual fields are licked by thin lines to the actual fields that they were
designed to resemble. Called "links," these lines specify that the virtual field is to be considered
logically "the same as" the actual field. In contrast, the connection between the two actual files
is shown by a thicker line, with the reference field in the peaks file at one end and the key field in

36

the countries file at the other erd. This is the connection TEAM must use to process a query
that depends on the implicit link between the two files, To compute the "contents" of the virtual
file, the system will match values from the reference field of one file to values from the key fieid
of the other file; this connection is therefore identified by the database term “join."

To leave the virtual-definition window and return to the primary acquisition window, click
the QUIT command at the top of the screen. Since nothing has been changed, the ABORT key
could also be used to abandon this window and return to the main TEAM window.

4.2 The Mechanics of Acquisition

The best way to learn the mechanics of acquisition is to actually use TEAM to acquire an
already familiar domain, such as the "pkcont” sample. This section is intended to furnish
information and make suggestions that will make the learning process easier. First, a basic
approach to acquisition is outlined. Then the essential steps in working with the main acquisition
window, the sort hierarchy, data, and virtual relations are described.

In working your way through this section, refer back to the overview in the previous section
and make extensive use of the on-line "help” facilities available through the prompt window, the
mouse-sensitive questions in the QA area, and the sort editor’s HELP command (explained below).
For ease of reference, Appendix A contains figures showing much of the acquisition information
for the sample domain; you can also reload and study the sample domain when questions arise.

4.2.1 The Basic Strategy

Once a domain has been loaded into TEAM, the system must be returned to a pristine state
before a new domain is acquired. This is done by selecting the RESTORE command from the
menu at the top of the main TEAM window. Wait until TEAM has restored its internal data
structures to the initial state; the TEAM > prompt will then appear and the status line will show
the "Tyi" indicator. Now select the ACQUIRE command and you will see acquisition window
appear with no entries in the menus.

The domain expert has considerable control over the order in which the various acquisition
tasks are accomplished. By using the mouse to select commands from the acquisition window or
objects from the file, field, and word menus, the domain expert tells the system what the current
task will be. TEAM's role in the dialogue is primarily one of responding to the user’s cues and
ensuring that certain constraints will be met. For example, when the domain expert has
answered the questions that first appear in the QA area for some object, TEAM causes further
questions to appear that are appropriate to the situation as specified up to that point.

However, it may be helpful to you, as a new TEAM user, to have a plan in mind for the
task of defining the sample domain or a new domain. A basic strategy is outlined here, but
remember that it is meant only as a flexible guide that can be modified to suit circumstances and
your personal style. Methods of accomplishing the steps presented here are described in later
subsections.

37

1. Begin by defining an "actual” file (like worlde) and its fields. The main acquisition
window will have to be used for defining the file, the sort editor for entering the file
subject into the sort hierarchy. When this has been done, select each field from the
field menu and complete the questions for that field. Finally, use the sort editor to
put the symbolic fields into the sort hierarchy.

2. Define any synonyms that are needed for the file subject and field names. Then go
back and repeat Steps 1 and 2 for the other actual files. It might be wise to save the
acquisition (as described below) after defining each file, so that a recent state can be
reloaded if it proves difficult to recover from a mistake made in current work.

3. Define any additional adjectives that are synonyms of existing adjectives. {Since
synonymous adjectives can be defined by giving multiple answers in the field’s QA
area, this may not be necessary.) Check the word menu for adjectives that have
irregular comparatives or superlatives, and correct TEAM's assumptions regarding
these forms. For example, replace "populouser"” with the compound "{more
populous)”.

4. Define the verbs for the actual files. Save the acquisition at this point.

5. Add the data for each actual file by using the data editor. (An alternative strategy is
to add data to each file immediately after it is defined. As far as TEAM is concerned,
data can be defined at any time once the file itself has been defined completely.)

6. Add the virtual relations for the domain, one at a time. This will involve using (1} the
main acquisition window to define the file and fields, (2) the sort editor to enter the
fields in the hierarchy, and (3) the virtual-definition window to specify the links and
join. You may also want to define verbs that apply to the virtual relations. Save the
acquisition after each virtual relation has been defined.

To save an acquisition, return to the main window using the QUIT command. If a file was
defined during the acquisition session, a message similar to the one in Figure 4-7 will appear on
the screen. Note that the path name used is the one that was specified in the QA area when the
file was defined. Answer "Y", which TEAM will expand to "Yes" as shown in the figure. (The
RETURN key is not needed.) TEAM will create a Lisp Machine file, with file type ".db",
containing LISP code that will recreate the database file when the domain state is reloaded. Each
time the data editor is used to add data to the domain file, a new version of the LISP code will be
saved. (The ".db" file will not actually appear in the file directory until the data editor has been
used on the domain file for the first time.)

Mo DB file B:>LORNA’worlide.DB -=— Shall I create a new one? (Y or M) Yes.
TEAM:
File nane? sanpie

TERM>

Figure 4-7: Screen Display After Saving an Acquisition

38

To continue saving the acquisition, select the SAVE command from the main TEAM
window. This instructs the system to create a file of LISP code that can be used to recreate the
domain state. The file type ".acq" is always used to indicate that it is an acquisition file written
by TEAM, and the code includes instructions to load the ".db" files that are associated with the
acquisition. Since the name of the acquisition file has not been specified previously (unlike the
database files), the system will ask for it, as shown in Figure 4-7. Supplying a simple file name,
as shown in the figure, will cause the file to be saved under the login directory; a path name can
be used instead to specify a different directory.

How often the domain state should be saved is a matter of experience, available disk space,
how much work has been done since the last save, and how difficult it would be to correct a
mistake in the next task. Some hints have been given above, but it is usually better to err on the
side of saving too often. In the interests of maintaining free space on the disk, periodically clean
out old acquisition and database files that have been superseded.

The next four subsections describe some of the details of the tasks mentioned in the basic
strategy. While experimenting with TEAM to create the sample domain, remember to refer back
to Section 4.1, which contains the introduction to the acquisition concepts; Appendix A also
contains reference material relating to the sample domain.

4.2.2 Acquiring Files, Fields, and Words

The definition of a domain begins with the acquisition window, which is reached from the
main window by selecting the ACQUIRE command, as described previously. Files, fields, and
words are discussed in turn below. Remember that the mouse can be used to get an explanation
of each question that appears in the QA area.

Files

To begin the definition of a file, select the NEW-RELATION command from the
acquisition menu at the top of the screen. TEAM will then set up the QA area for the file with
the question File name -, and put a placeholder composed of question marks in the file menu.
Position the cursor over the answer space of the file name question and click the leftmost button.
A blinking rectangle will appear on the line to indicate that TEAM is waiting for you to type
your answer. Type the name of the file and press the RETURN key. (The mouse cursor can be
moved out of the way once the blinking rectangle appears.) Note that all input is converted to
uppercase as soon as you type RETURN. TEAM will replace the question marks in the file menu
with the file name, and further questions will appear in the QA area.

As the questions appear, either accept TEAM's assumption (such as the path name) or give
a new answer. Remember that there are two types of questions: those that have a list of possible
replies, from which you must select one with the mouse, and those that require an answer to be
typed. Remember also that the mouse can be used to get an expanded version of a question.

It is often possible to correct a mistake in one’s answer simply by selecting a different
alternative or typing a new value. In principle, any response should be reversible. Because of
limitations in the implementation, however, problems may arise if you change the answer to a
question posed by TEAM for the purpose of determining which of several possible questions it

39

should subsequently ask. The question of file type (with answers virtual and actual) belongs to
this category. It may also be difficult to change a file name or the fields in a file once TEAM has
accepted them, so check such responses carefully before typing RETURN. This is one reason it is
wise to save the domain state before acquiring a new file.

Note TEAM's reminder that the file subject must be inserted into the sort hierarchy. (This
is described in the next subsection.) Once this has been done and the basic questions in the QA
area have been answered, the file name will turn boldface in the file menu. This means that no
further actions are needed. to define the file. However, actions may still be necessary for
completing the definitions of the file fields.

Fields

Field names are defined by their entry in the QA area of the file, but TEAM still needs
further information about most fields. Supply it by mouse-selecting each field from the field
menu, and then answering the questions presented in the QA area. Arithmetic and feature fields
will be inserted into the sort hierarchy automatically, but symbolic fields will have to be entered
as described below. (TEAM will print a reminder for each symbolic field.} The field name will
turn boldface in the field menu as soon as the field definition (including insertion into the sort
hierarchy) is complete.

The field type question (with choices symbolic, arithmetic, or featurc) and the arithmetic
field subtype question (with choices dates, measures, or counts) are used by TEAM to determine
what further questions should be dispiayed (and where the field should go in the sort hierarchy).
Thus, the potential exists for changes in these answers to cause difficulties.

Indicating that you want to edit the lexicon for a symbolic field may cause the word menu
to become very large if there is a large number of different values for that field in the database.
This lexicon-editing feature may be very useful (for instance, to add synonyms or irregular
plurals), but it should be used cautiously.

Do not try to alter the symbols indicated for “unknown" and "not applicable” in the QA
area, since the system's current version will not know how to make that change. These symbols
are shown in the QA area because the "full” version of SODA recognizes and distinguishes
between them. However, the "in-memory" version of SODA used to demonstrate TEAM does
not recognize them as having any particular meaning.

Note how TEAM utilizes the sample value for a symbolic field to explain the questions
about classifiers in terms that can be understood easily by a domain expert who is not a linguist.

Words

If the adjectives supplied for arithmetic fields have irregular comparatives or superlatives,
TEAM's assumptions for these forms will be incorrect. For example, it will assume that
“populouser,” rather than "more populous,” is the comparative form of the adjective
“populous.” When the irregular form is simply "more" or "most" used with the basic adjective,
as in this example, it is not strictly necessary to correct the assumption. TEAM will recognize
"more populous"” in a sentence as meaning the comparative of populous, regardless of whether it

40

is shown in the QA area. However, because TEAM uses the comparative and superlative from
the QA area to generate the pseudo-English restatement of the query, correcting the "more" and
"most"” forms will affect what the user sees during the query translation. To correct the irregular
comparatives and superlatives, select each adjective from the word menu (to bring up the QA
area), click the answer space of the appropriate question with the mouse, and type in the correct
word or multiword phrase. (Remember to enclose a phrase in parentheses.)

To define a new word, select the NEW-WORD command from the acquisition window
and answer the questions as they appear in the QA area. Remember that nouns and adjectives
must be synonyms of words already in the domain, and that verbs must relate fields and/or file
subjects. '

A word can be deleted from the domain by positioning the mouse over the word in the word
menu and clicking the middle button. However, words that were generated by TEAM from file
subjects and file names should not be deleted; TEAM will print a warning message if you try to
do this.

4.2.3 The Sort Editor

The acquisition process also involves use of the sort editor. To move to the sort-editor
window, select the SORT-EDITOR command from the main acquisition window. As explained
in Subsection 4.1.2, the leftmost mouse button can be used to expand various parts of the sort
hierarchy on the screen.

The prompt window shows what other mouse commands are available. Two quick clicks of
the leftmost button will insert a new node underneath the node the cursor is touching. One or
two clicks of the middle button will delete the node the cursor is touching: one click signals
TEAM to retain the structure that is underneath the deleted node so that the entire subtree can
be inserted somewhere else, whereas two clicks indicate that this substructure should be deleted.
One click of the rightmost button brings up the sort-editor menu; the leftmost button can then be
used to select a command from this menu. Two clicks of the rightmost button will bring up the
Lisp Machine system menu, which contains operations related to windows on the screen and to
LISP programs.

Display the sort-editor * help” information by using the rightmost mouse button (while the
cursor is positioned over some node) to bring up the sort-editor menu, then selecting the HELP
command. Several pages of information will be displayed on the screen, including a short
description of each command available from the menu or by mousing 2 node.

To insert a file subject or symbolic field into the sort hierarchy, position the cursor over the
node that should be the parent of the new node. Click the leftmost button twice in quick
succession. This will bring up a menu containing labels for the file subjects and symbolic fields
that have been defined but not yet inserted into the hierarchy. Select the correct label with the
leftmost mouse button. TEAM will insert the new label as a child of the current node. A menu
entry *ANY™* is also provided so that, when appropriate, intermediate nodes can be put into the
hierarchy (see Chapter 5); TEAM will display a small box in which to type the new label.

41

Moving the mouse cursor out of the sort-editor menu "box" will make the menu disappear
without any command having been executed. Similarly, moving the cursor out of the menu of
nodes that may be inserted under the current node will simply abort the insert command. (This
is what normally happens when the cursor is moved out of a menu of mouse-sensitive commands.
However, it is not true of a box that is used to specify values and has a specific EXIT command,
such as the user profile menu.) Thus, to see what file subjects or fields remain to be inserted,
simply give the insert command at any node, examine the choices in the menu, and then abert
the command by moving the cursor away from the menu.

To instruct TEAM to create a symbolic field equivalent to a file subject in the sort
hierarchy (see Subsection 4.1.2 and Figure 4-4), position the mouse over the file subject and use
the rightmost mouse button to bring up the sort-editor menu. Select the Insert Equiv.
command from the menu, which will bring up the menu of labels that need to be entered. Select
the appropriate field name from the list. TEAM will place the new label underneath the main
label on the same node. Remember: once an equivalence has been inserted, st cannot be
removed.

The sort-editor menu also contains the commands that are used to mark children of a given
node as disjoint sorts (and to "undisjoin" nodes) as well as to add a second parent for a node (an
“ISA" link). Refer back to Subsection 4.1.2 for an introduction to these concepts, and consult
the "help" information in the menu and the mouse prompts at the bottom of the screen for
guidance in using these commands.

To return to the main acquisition window, select the QUIT command from the menu at the
top of the screen. (It looks the same as the main TEAM menu, but the QUIT command is the
only one that is actually mouse-sensitive from the sort editor.)

4.2.4 Entering and Editing Data

Adding data to the files in the sample domain is another part of the acquisition process.
This topic was not covered in Section 4.1 (because the process of viewing the data is no different
from the process of changing it), but samples of the data in the pkcont domain were seen in
Figures 3-2 and 3-3.

To add data to a database file or relation, go to the main TEAM window and select the
EDIT command from the menu at the top of the screen. (If going to the window causes the
system to print a message about creating a DB file, answer "Y" as shown ia Figure 4-7.) The
data editor will display a menu showing the names of the domain files, as shown in Figure 4-8.
Select one of these files to edit.

Select relation tg adit:

WORLC X

Figure 4-8: A Data-Editor Menu of File Names

42

Once a file has been selected, the data editor presents a menu showing the key fields of each
entry in the file as well as the entry *NEW?*, as shown in Figure 4-2. To add a new entry, select
NEW? from the menu; to change some value for an entry, select its key from the menu. (Note
that moving the mouse cursor out of either of these menus will abort the editing session with no

harmful effects.)

Sglect DB antry to edit:
xkNE Wk
ACCNCAGUA
ANNAPURNA
BEAR
CILALTAPEC
DENALI
Devil’s Thumb
DHAULAGIRI
EVEREST
FUJI
GASHERBRUM
HALTIA
HUASCARAN
K2
KANCHENJUNGA
KENYA
KILIMANJAROD
KLYUCHEVSKAYA
LASSEN
LHOTSE
LOGAN
Long’s
MATTERHORN
MONT BLANC X
MONTE R0SA
POPOCATEPETL
SHASTA
Twin Owls
WHITNEY

Figure 49: A Menu of File Entries

The data editor will display in a box (such as the one in Figure 4-10) the field names and
values (actual or null) of the selected entry. Use the mouse to select the value position of a field
and then type in a new value, ending the input with a RETURN. If the new value is a multiword
phrase, enclose it within parentheses, just as in other parts of the acquisition. TEAM will convert
the parentheses to vertical bars (as shown in the example) after capitalizing the whole phrase.
When all the fields have been assigned their correct values, position the mouse over the square
box adjacent to the Exit command and click the leftmost button. The data editor will then
return to the menu of entries so that another entry can be edited. (Don't be alarmed if changes
you have made to key values do not appear in the entry menu; leaving the menu and returning to
it will cause the display to be updated.)

43

Change Field values, and mouse ‘axig’
PEAK-COUNTRY : FRANCE

PEAK-HEIGHT: 15771.
PERK-NAME: [MONT BLANG] N
PEAK-VOL: N

Exit O

Figure 4-10: Values For A Particular Entry

To finish editing a file, simply remove the cursor from the menu of entries. Another
TEAM>> prompt will then appear in the main window. To edit entries in a different file, select
the EDIT command once again and follow the procedure described above. Using the data editor
can be tedious if a significant amount of data must be entered. A faster method is to insert a few
entries with the data editor and then to use the ZMACS editor to add further entries to the
".db" file created by TEAM. Some details regarding this procedure are given in Chapter 5.

4.2.5 Defining a Virtual Relation

The remaining task in the acquisition process is to define one or more virtual relations. The
acquisition of the already familiar pkcont relation will serve to illustrate this task.

As described earlier, the first steps in defining a virtual relation are very similar to those
used in defining an actual relation. Give the NEW-RELATION command to create a new file,
and define the file and fields appropriately. (Refer to Appendix A for details not supplied here.)
The file type is virtual and no path name is required. The subject is peak, to correspond to the
subject of the peak file. The virtual fields are designed to correspond to fields in the actual
relations: the key field, pkcont-name, is like the key field peak-name, and the other field,
pkcont-continent, is like the nonkey field worldc-continent.

The subject of the pkcont file is already in the sort hierarchy, since it is also the subject of
the peak file. However, the two fields must be inserted as equivalent sorts of the corresponding
fields from the actual relations. Thus, pkcont-name should be inserted as equivalent to
peak-name, while pkcont-continent should be made equivalent to worlde-continent (as in Figure
4-4). '

Ounce the file and fields have been defined, the schematic conrections must be specified in
the virtual-definition window. Select the VIRTUAL<DEF command from the acquisition menu.
The virtual-definition window will resemble Figure 4-8, except that there will be no diagram and
no textual specification of the virtual fields. Mouse commands will be used to create the diagram,
and TEAM will fill in the textual specification of the virtual fields as the schematic "links" are
created. (Review description of the "links" and "join" in Subsection 4.1.3.)

First, click the leftmost mouse button to select the pkcont file from the file menu. Move
the cursor to the large open window at the bottom of the screen, where you will see a hollow box
appear and move along with the cursor. This box is a schematic template for the pkeont relation.
Move it into a convenient position within the window {see Figure 4-8) and click the leftmost

44

mouse button. TEAM will lix the position of the template and fill in the file and field names.
Once the template is fixed in place, position the cursor over the file name portion of the template;
look at the prompt window to see that mouse commands can be used to delete the template
(leftmost button) and to pick it up with the cursor so that it can be relocated (middle button).
Use the mouse to select each of the actual files and position its template in a convenient location
in the window.

Now place the cursor over one of the f{ield name portions of a file template, and note that
different mouse commands are now available. The leftmost button is used to create {one click) or
delete {two clicks) "links" between field names, while the middle button is used to construct or
delete a "join" between two fields.

To create a link between the fields pkcont-name and peak-name, position the cursor over
one of the fields (making sure it is on the field, not the file) and click the leftmost button once.
Then move the cursor to the other field and click the leftmost button again. (To delete the link,
place the cursor over either field and click the leftmost button twice in quick succession.) Use the
same procedure to create the link between pkcont-continent and worldc-continent. Then make
the join between peak-country and worldc-name by following the same steps but using the middle
button. This completes the definition of pkcont.

You will observe that the virtual-definition join is made between the reference field
peak-country and the key field worldc-name. This is because TEAM will need to "match” values
from these two fields to connect the correct peak and country entries. This is different from the
connection that was made in the sort hierarchy when the peak file was defined. There the field
sort peak-country was made equivalent to the subject sort country, which represents not just the
name of the country but the thing itself. The sort hierarchy is concerned not with matching
values from fields, but with the relationships of the essential linguistic concepts in the domain.

This subsection completes the introduction to acquisition. Using the acquisition window
(including the QA area), the sort editor, the data editor, and the virtual-definition window, the
domain expert tells TEAM what the system must know to enable it to answer questions in a new
domain. In the next chapter, we shall continue our discussion of the methodology and problems
of adapting TEAM to a new domain by addressing some concerns that arise in the course of
domain design. It is recommended that users familiarize themselves thoroughly with the concepts
and mechanics presented in this chapter before moving on to the next one.

45

5. DOMAIN DESIGN

As mentioned earlier, the process of moving TEAM to a new domain includes not only
interacting with the system to supply the acquisition information, but also deciding what such
information should comprise. This involves designing, testing, and revising the database structure
and linguistic support. Our objective in this chapter is to supplement the preceding introduction
to the concepts and mechanics of acquisition by providing guidelines and details that will be
helpful in the design process.

In designing a new demonstration, it is important both to pick a domain of interest to both
the designer and the prospective end users, and to consider whether the characteristics of the
intended application are indeed suitable for TEAM. The domain expert may design a
demonstration either by adapting an existing database "schema" or organization, or by creating a
new database schema from his own knowledge of the application. In either case, the domain
expert should have enough familiarity with database concepts and with the domain data to be
able, when necessary, to design and modify the logical organization of the data. A few comments
about designing the database structure are given later, but some fundamental knowledge is
assumed -- particularly regarding the relational model of database organization. Many books and
articles on database concepts and the relational model are available; one such reference is An
Introduction to Database Systems by C. J. Date, published by Addison-Wesley in 1977.

Adapting an existing database schema for TEAM will require more or less work, depending
on how similar its original organization is to that required by TEAM. For example, a schema
that is already in a relational format will require less adaptation than one organized as records
and sets. We suggest that the new user begin by building a fairly small domain with
straight{orward data relationships that {it easily into the relational model. It is also important to
remember the injunctions expressed in Chapter 2 in regard to the nature of the TEAM prototype.

5.1 Judgment and Experimentation

No formula or fixed procedure can ensure a well-designed demonstration domain in every
case. As in most design processes, including database design methodologies, a considerable
amount of judgment and experimentation is necessary. However, as remarked earlier, this
chapter does contain guidelines that may assist the domain expert in his approach to the design
process and in his thinking about the judgments involved.

Since TEAM’'s purpose is to process database queries that are expressed in English, an
essential basis for making design judgments should usually be consideration of the types of
English queries that end users are likely to ask (or, in other words, how users will "talk about"
the database). An example of one such design decision was mentioned in the preceding chapter,
with respect to the placement of file subjects and symbolic fields in the sort hierarchy. Because
decisions about {ile structure, word usage, and virtual relations may also have linguistic
implications, they should not be made without taking typical queries into account. For this
reason, an important part of designing a new application is to gather one or more sets of English
sentences that are appropriate for TEAM, use the application data in various ways, and are
typical expressions of data retrieval requests in the application domain. The domain expert can
use these sentences to assess the effects of various choices and to test versions of the domain as

47

they are acquired. One or more subsets of the test sentences can be selected for use in
demonstrating the system. -

Often design judgments cannot be arrived at without some experimentation, particularly if
the domain expert is not a natural-language interface expert and has little experience with
TEAM. As arule, the best way to understand the linguistic implications of a choice among
design alternatives is to actually acquire different versions (test domains) of part of the
application and then run queries against them. Thus, the design process becomes an iteration
through the stages of planning, acquiring, testing, and revising.

Because of this iterative process, and the practical difficulties that can be encountered in
trying to change some of TEAM's acquisition information, it is a good idea to plan to experiment
with small segments of the demonstration. This can be done in at least two ways: (1) by
identifying and building individual parts of the demonstration that require testing to answer
particular design questions, and (2) by saving the acquisition state at strategic points so that
various experimental domains can be built on a common base. If there is ever any doubt as to
whether a problem might have been caused by trying to change an answer previously given to
TEAM, be sure to check this out by reacquiring the domain from a pristine TEAM state (that is,
the state that the system is in when started or after the RESTORE command has been used). It
is also a wise precaution to acquire the entire domain from a pristine state once all the
experimentation has been completed.

5.2 Some Characteristics of an Effective Demonstration

As the question of what types of queries are suitable for a natural-language interface such as
TEAM has already been addressed, we shall not discuss it any further here. Nevertheless, the
demonstration designer is urged to choose an application domain that will lend itself to
appropriate English queries, and to create a set of sentences for the domain that will utilize
TEAM’s capabilities. In addition, the selected domain should be of interest to those for whom the
eventual demonstration is intended.

Some issues relative to the database structure will be brought up in the next section, but
the designer should begin by considering both the types and interrelationship of data that might
be stored in the database. The results of such an analysis will help determine which files and
fields the database should contain. Experience has shown that the most interesting
demonstrations invoalve just a few {iles, with a small number of fields in each. There should be at
least two files, with some relationship between them (as in the pkcont sample domain), so that
the system’s ability to interrelate data from different files can be exploited. Similarly, the
database should include several of the diverse field types offered by TEAM: symbolic, feature,
count, measure, and date. However, the use of a large number of files, or of many similar fields,
generally entails additional acquisition effort without making the demonstration commensurately
more interesting.

After sketching out an initial plan for the database files and fields, the domain expert may
proceed to plan the linguistic support for the database; included therein are answers to the
questions in the QA area for each file and field, the placement of the file subjects and symbolic
fields in the sort hierarchy, and the actual words that will be used. Here too, the most impressive

48

demonstrations will be those that exhibit a good portion of TEAM's capabilities: a field that is a
classifier of the file subject, enough adjectives for interesting comparisons, synonyms, verbs
relating fields to the file subject or to one another, an equivalence in the sort hierarchy (possibly
arising from a field that acts as a reference or "pointer” from one file to another), and so forth.
In planning these details, the designer may realize that certain modifications of the database
structure would make the domain more interesting.

One of the powerful features of TEAM is that it enables the domain expert to define virtual
relations, so that the end user's queries are supported by an implicit connection between certain
database files. However, to design a domain that allows this capability to be demonstrated
properly, the domain expert must understand when a virtual relation is needed and what its
essential function is. More will be said on this subject later when we discuss virtual relations in
greater detail.

Finally, an effective demonstration should involve a moderate amount of data. Enough
data is needed in each file to ensure that typical queries will elicit positive results. Too much,
however, will slow up the processing of a SODA query, besides being tedious for the domain
expert to enter. Furthermore, once the meaningful patterns that appear in the application have
been represented in the sample data, large numbers of entries that simply repeat these patterns
will probably detract from the effectiveness of the demonstration. This is one of the ways in
which TEAM, as a research prototype of an English-language interface, differs from a commercial
database management system.

5.3 The Database Structure

The database schema for a TEAM domain must be relational, that is, the data are
organized in terms of relations or tables like thosé in the pkcont sample domain we examined
earlier (see Figures 3-2 and 3-3). Furthermore, the schema must be in "third normal form" {or
fourth normal form) so as to avoid anomalies in retrieving the data. The concepts and
methodology of normalization will not be presented here formally, but they are described in many
publications dealing with the relational model. This section does contain some suggestions on the
procedure of constructing a TEAM database and some comments about how the resulting
structure is related to the way that people think and talk about the data. These suggestions and
comments touch upon some of the problems of normalization, as well as on some general issues in
database design.

As mentioned in the previous section, the domain expert should begin the task of designing
the files and fields of a TEAM database by deciding what object categories should be included
(such as mountain peaks and countries), and what properties, features, or attributes (such as
height and population) should be recorded for each category. The term "entity type" is often
used in database design, and will be employed here, to refer to a category of objects about which
data is to be stored. Various terms {notably "attribute") are used to refer to the kinds of data
kept about an entity type, but the term "property” will be used most often in this discussion. In
.the TEAM database schema, each entity type chosen by the domain expert will become the
subject of a file. The file will be about "entities" (see Section 4.1.1), and each entry in the file
will represent a particular entity (such as a mountain or a country). The chosen properties of the
entity type will become fields in the file. In selecting the properties to be included, the domain

49

expert should consider what the TEAM field type (such as symbolic or count) of each possible
property would be, and choose one or more properties of each type for the demoastration
database.

It is very important for the domain expert to avoid combining data about more than one
subject or entity type in a single file (which is a violation of third normal form). For example, if
all of the data about a country were included in the peak file (along with the peak-country
reference}), TEAM would interpret the capital, population, and area fields as properties of a peak,
since peak is the subject of the file. Since this does not correspond to the way users think and
talk about these concepts, it would cause confused interpretations of the user’s queries.

The domain expert should also consider the relationships between entity types. The
peak-country field in the sample domain illustrates one common kind of relationship. The
country name in the peak-country field can be considered, in a sense, a property of the peak.
However, since it also acts as a pointer to the country that is related to a given peak, it
represents a relationship between the two entity types. In contrast, the city name in
worlde-capital is simply a property of the country because there is no city entity type (or file) in
the pkcont domain. The critical factor in the decision to make country an entity type (with its
own file) and capstal simply a property (with just a field) was that the designer wanted to record
properties of countries, but not properties of cities. Once this decision had been made, it became
clear that country had to be the subject of a file and that peak-country would act as a reference
to the appropriate country entity. Making a country and its properties part of the peak entity
would have violated the normal form constraints, as mentioned earlier. Making city the subject
of its own file and having the capital of a country refer to it would not have violated any
constraints, but there would have been no fields in the city file other than the city’s name. Thus,
it was simpler to just treat the capital of a country as an ordinary property rather than as a
reference field.

The kind of relationship among entity types that is described above is special in that there
is a one-to-many correspondence between the entities of one type and those of another type. For
example, there is a one-to-many relationship between countries and peaks, since there is exactly
one country for every peak (at least in the demonstration, if not in the world), although there
may be many peaks in a given country. Relationships that possess this one-to-many
characteristic can be represented in the database schema by a reference field that is included in
the file for the "many" side of the relationship and that contains the value from the key field for
the "one" side. (If there are two or more key fields, there must be an equal number of reference
fields.) The reference field must be equivalent to the subject of the referenced (or one-side) file
in the sort hierarchy. A common mistake is to make the reference field of one file equivalent to
the key field of the other file instead of the latter's subject. Relationships that are characterized
by a one-to-one correspondence can also be represented by a reference field, which can be placed
in either file.

It is possible to have a many-to-many relationship between two different entity types or
between an entity type and itself, such as a border relationship between two countries. It is also
possible to have a relationship between three or more entity types {not necessarily distinct}, such
as a supply relationship between suppliers, parts, and customers. Furthermore, relationships
sometimes have properties of their own, that do not correspond to properties of any of the entity

50

types involved. For example, an aasembly relationship between parts and assembled objects
might have a quantity property. In all of these cases, normal-form constraints prevent the
domain expert from using the reference-field strategy (unless, as described later, a new entity type
is introduced). lnstead, these relationships can be represented as files that are "about
relationships." (Remember that this is the alternative to "about entities" in the QA area used to
specify a file.) In the relationship file, each entity type is represented by a field like its key, and
this field becomes a child of the entity file's subject in the sort hierarchy. Thus, the border file
would have two fields, ¢ and ¢2 perhaps, which would both be children of country in the sort
hierarchy; the data in these fields would be country names. The aasembly file would have three
fields: two for the entity types (one field a child of part and the other a child of
asaembled-object), and a third for the quantily property.

A file that is "about relationships" has no subject as far as TEAM is concerned, since it
does not hold data about a type of thing. Questions that refer to properties of things, such as
“what is the height of each peak,” are appropriate to a file about entities (that is, a file with a
subject) but not to a file about relationships. However, verbs can be defined that relate the fields
of a relationship file, so that questions like "what suppliers supply each customer" or "what
customers buy widgets from Universal Widget Co." can be asked.

There is a way to represent the above relationships with reference fields, but it involves
introducing a new entity type in each instance. The "supply" case is a good example. As noted
above, the designer could choose to represent the connection between a supplier, a part, and a
customer as a relationship file. On the other hand, he could decide to call the connection a
supply agreement and make it the subject of an entity file. The supply agreement file should
have a key field, such as an sa-number, and three fields that act as references to supplier, part,
and customer entities. Technically, the designer’s choice is to model the connection as a single
relationship among three entity types or as three one-to-many relationships between the three
entity types, on one hand, and a fourth entity type, on the other. Either way of organizing the
data is acceptable, so the designer should base his choice on whether being able to "talk about"
supply agreements is useful and proper for the application. For instance, the question "What is
the supplier of each supply agreement!" would be appropriate only if "supply agreement" were
the subject of an entity file, but "Which supliers supply widgets?" would work in either case (as
long as the verb "supply” is defined).

Another matter of judgment relates to data items that have different values but very
similar roles, such as quarterly-earnings figures for a year, or several possible "descriptors” of a
geographical feature (with values such as flat, circular, or temporary). In designing the database
structure, the question arises as to whether these data items are really separate " properties" of a
file subject, each of which plays a different role, or are simply multiple values that all play the
same role. If their roles are indeed dissimilar and will be distinguished by different words in the
English queries that are given to TEAM, such data items should then be made each a separate
field in the entity file, Quarterly earnings might be treated this way, for example, if the domain
expert decided to distinguish first-quarter earnings from second-quarter earnings, and so forth.
However, this would preclude references to quarterly earnings in general, since the underlying
SODA software is not sophisticated enough to merge data from different fields into a single field.

51

If the data items do not perform different functions and it would be unnatural to refer to
them with different. English words, they should not be represented as separate fields. This would
violate a normalization constraint having to do with “repeating groups," as well as making
English questions awkward or ineffective. Instead, a relationship file should be designed to
represent a many-to-many relationship between the entity type and the data in question. This
might be the best way to deal with feature descriptors, for example. In the relationship file, each
feature would be paired with each of its descriptors. Assuming that a feature was identified by
its number and a descriptor by its name, sample entries might be: (24, circular), (24, temporary),
(32, gable), (46, without-superstructure). One or more verbs would be defined so that questions
such as "What descriptors describe each feature?” could be asked. There would also be an entity
file with subject "descriptor” if the database contained any properties of a descriptor other than
its key.

Other situations can arise in which the domain expert must make a design judgment, either
on the basis of formal normalization requirements or by trial and error when TEAM does not
seem to be interpreting queries correctly. Often a problem that is discovered when a design is
tested can be traced to a normal-form violation. For example, situations in which the same
information is represented in more than one way are not always obvious when the domain expert
begins a design, but are very likely to cause problems in "talking about" the database. As
mentioned before, these conflicts must be resolved by considering typical queries for the
application.

5.4 Defining Words

As files and fields are acquired, TEAM also adds words to the lexicon for the domain. The
name of each field and the subject of each entity file become words. In addition, TEAM learns
words from the answers to questions about files and fields, such as the adjectives acquired for
measure fields and the nouns, adjectives, and verbs acquired for feature fields. The words that
appear in symbolic fields in the database (such as the names of countries, capitals, continents, and
peaks) are also acquired, although they do not appear in the word menu unless the option to edit
the lexicon is selected for the appropriate field {see Section 4.2.2). '

The "type" of each noun is specified during the acquisition. A noun may have one of four
types: common {or count), which includes things that can be counted, like country, ship, or
supplier; mass, which applies to things that are measured in bulk, such as wheat or oil; proper,
which indicates proper names like Nepal or Unsversal Widget Co.; and abstract, which includes
nouns that can be used without determiners, like truth in "the pursuit of truth" or type in "what
patients have blood of type AB!" If a noun is not clearly a mass, proper, or abstract noun,
common is the best choice. TEAM makes an initial selection for the type of each noun, which
generally does not need to be corrected by the domain expert. If a noun's type must be changed,
however, this is done by mousing the entry in the word menu and answering the appropriate
question in the QA area. The only exception is nouns that do not appear in the word menu
because they were acquired from symbolic data and the lexicon-editing option was not selected;
the type of such a noun is specified in the QA area that defines the symbolic field.

In addition to learning the basic vocabulary related to files and fields, the system can
acquire verbs and synonyms (which may include nouns, adjectives, and verbs). The synonym

52

capability is especially useful for defining multiword phrases. Although a file subject or field
name may be a compound phrase that is typed with hyphens instead of spaces (since spaces are
not permitted in file subjects, file names, or field names), it is often convenient to use a single
word or abbreviation and then define one or more compound phrases as synonyms. For example,
supply agreement might be defined as a synonym for the abbreviated file subject sa.

The ability to define verbs is a powerful feature, which broadens substantially the range of
sentences that can be processed. In addition to selecting verbs for the domain, the designer must
consider how the linguistic properties of each will be conveyed to the system. The present-tense
(third person singular), past-tense, and past-participle forms of the new verbs are supplied as
answers to questions in the QA area. The designer also furnishes a sentence that uses the verb in
association with elements of the database structure; this sentence must use the verb in the
present tense and active voice. (TEAM does not currently have a way to define a verb that can
be used only in the passive voice.)

The defining sentence must also use the verb in its most general sense — that is, with as
many elements of the database structure as are applicable. From this most-general usage, TEAM
will determine whether the verb is intransitive, transitive, or ditransitive, and whether particles
ot prepositional phrases may be used. For example, the sentence "a component fails” indicates
that the verb fasl is intransitive, because it has a subject (component) but no object. For this
input to be accepted, component would have to be {or be synonymous with) a file subject, a field
name, or a common noun for a feature field; all the nouns used in the following examples conform
to this requirement.

The sentence "a country covers an area" indicates that cover is a tramsitive verb, with both
a subject (country) and an object (area). The sentence "a supplier supplies a part to a customer"
tells the system that supply is a ditransitive verb, which can be used with a subject (supplier), a
direct object (part) and an indirect object (customer). TEAM can also translate sentences
employing the dative form of a ditransitive verb, such as "Which suppliers supply Universal
Widget Co. bolts?" You will note that "a supplier supplies a part” would have used the verb
supply correctly, but it would not have been the most general usage of the verb from the domain
standpoint, and would not have informed TEAM that customer could be used in a sentence with
supply. Similarly, the sentence "a component fails on a failure date"” shows not only that the
verb is intransitive, but also that a prepositional phrase can be used to relate a component to a
failure date. Putting the prepositional phrase into the defining sentence does not compel the user
to include it in a sentence that uses the verb, but omission of the phrase from the defining
sentence will prevent its use in queries. Some verbs require a verbal suffix, such as "up" in "a
building material makes up a structure." The system will recognize a verbal suffix in the defining
sentence and take it into account in translating queries.

If there are two or more unrelated nouns that can be used with a verb, the verb should be
defined twice. For example, make might be defined once as "an employee makes a part" and
once as "a machine makes a part." TEAM will try to decide which of a verb’s possible meanings
is being used in an input sentence by examining the context in which the verb is used. If there
are two or more related nouns that combine with a verb in a particular way, then the defining
sentence should use the noun that appears closest to the top in the sort hierarchy. For example,
suppose that part and widget are two file subjects, and that widget is a child of part in the sort

53

hierarchy. If the defining sentence for supply used widget, the verb could not be applied to parts.
However, defining the verb by using part makes it possible to apply it to widgets as well.

As a second example, suppose that country and continent are file subjects, both are
children of location in the sort hierarchy, and each has an area property. By specifying "a
location covers an area,” the domain expert can define the verb cover to apply to either a
country or a continent, as well as to the corresponding area. But the verb must be acquired
after the files and fields have been fully defined, including the insertion of the sorts in the
hierarchy. In general, one should always define verbs after the sorts to which they apply have
been inserted in the hierarchy. This is especially important in the case of equivalent sorts, so as
to prevent TEAM from marking a verb as potentially ambiguous when, in fact, equivalence
excludes that possibility.

Once TEAM has interpreted the sentence in a verb definition, it will display other sentences
containing the verb and ask the designer to signal whether they are correct, thereby eliciting
other facts about how the verb may be used. When the domain expert quits the acquisition,
TEAM will print a warning message in the QA area of the screen if it cannot find a database
match for some part of a verb definition. The user is instructed that pressing any of the regular
keys (such as the space bar) will cause TEAM to continue exiting from the acquisition. However,
the system will not be able to process sentences containing that problematic verb. When such an
error appears, the ABORT key can be used to stop exiting and return to the acquisition mode for
correction and completion of the verb definition.

As shown above in the case of verbs, it is possible to introduce ambiguity into the domain
by having the same word defined in more than one way. The database is another source of
ambiguous words; "kenya", for example, could be both the name of a mountain and the name of
a country. Using the same field name in two different files or listing the same adjective as being
applicable to two different fields will also produce ambiguous words. (The field names will be
differentiated in the field menu because of the file-name prefix, but the word formed from the
field names will have two different database attachments.) When TEAM encounters an
ambiguous word in a sentence, it must try to resolve the situation by choosing one of the word's
possible meanings. Since the system’s success in choosing the correct meaning depends on many
factors related to the context in which the word is used, ambiguity will be handled more
successfully in some cases than in others. It is wise to experiment with particular instances of
ambiguity in a domain -- then, before building them into the finished domain, to decide which
ones are handled most appropriately.

5.5 The Sort Hierarchy

As noted previously, the system inserts the sorts for arithmetic and feature fields into the
sort hierarchy, but the domain designer must do this himself for symbolic fields and file subjects.
Just where these should be placed in the hierarchy depends on the way that the subjects and
fields relate to the core concepts in the hierarchy and to one another.

The most basic distinction in the generic hierarchy is among the three first-level nodes,
physical-object, abstract-object, and legal-person. In the TEAM context, a physical object may
not be an abstract object and vice versa; these sorts are disjoint. A "legal person,” however, may

54

also be either a physical or an abstract object. (It siould be remembered, in this connection, that
the domain expert can give a node more than one parent, as long as no cycles are formed and no
disjoint ancestors are implied.) The designer seldom has to put new nodes of the hierarchy
directly beneath these first-level nodes, since each of them has several subcategories.
Nevertheless, it is important to understand something about the characteristics of the objects in
each of these classes, since these characteristics apply to the subcategories as well.

e A physical object has properties such as weight, height, or color. It also has a
location, which is theoretically changeable. In practice, of ¢course, this may not be
possible, as something like a building or a mountain is not readily moved.

o An abstract object does not usually have weight, color, or other such properties, nor
does it have a location in the same sense that a physical object does. In fact, we do
not usually think of an abstract noun as representing an "object” at all, even though
"abstract object" is standard terminology for this concept. The sort number, for
example, represents an abstract object, and it is clear that a number does not have
physical properties or a location. In contrast, the sort meeting represents an abstract
object which could have a location, but not in the sense that one could pick it up or
give it to someone else. Country also has a location in a similar sense and, like a
physical object, it has an area. However, we talk about a country as a location itself
(for such things as cities and mountains), and locations are usually abstract objects.
The designer of the pkcont domain had to make a choice between making a country a
physical object or making it an abstract location; in this case, he decided in favor of
the latter.

e A "legal person" or "agent," in the TEAM sense, is someone or something that can be
the direct reply to a question beginning with "who." As examples, consider the three
subcategories: pergon, corporation, and government. Person also comes under the
physical-object category, while corporation and government also belong to the
abstract-object category. The sort country could be considered a "legal person” (as a
child of government) in a "politics" database, since we refer to countries as agents in
such sentences as "Who sold wheat to Russia?" In a geography database, however, a
country is not likely to act as an agent.

The subcategories of physical-object and legal-person are easily comprehensible, but the
subcategories-of abstract-object may be made clearer with a brief explanation.

o A location can be the direct reply to a question beginning with "Where is ...?" This
is why continent, capital, and country are children of location in the pkcont domain.
A location is unrelated to time.

® An cvent has both a time and a location, though the latter does not exist in the sense
that the event could be picked up and given to someone. Meeting is an example of a
sort that would fall beneath event in the hierarchy. An event can also be used as a
"shorthand"” reference to a time or a location. For example, the answer to "Where is
he?" might be "At the party." :

¢ Scalar is a sort used to handle several concepts related to numbers. TEAM places the
names of date, count, and measure fields underneath the appropriate subcategories of
scalar during acquisition.

e Other-abs is provided as a node underneath which the designer can place nouns that
do not fall into any of the generic subcategories of abstract-ebject. The ounly reason
this node is furnished, instead of having the designer insert nodes directly under
abatract-object, is that the screen would become too crowded if more than a few direct
subcategories were added.

® A measurc-unit is an abstract noun like foot or squarc-meter. Many of the standard
units of measure are in the generic hierarchy, but a new one is inserted if the domain
designer specifies a new type of unit for a measure field.

e Legal-abs, an abbreviation of "legal abstraction," should be a parent of legal entities
that are not physical objects, such as government, corporation, or parinership;
typically these sorts also have legal-perason as a parent. '

s Name is a very important sort, since placing a {ield as a child of name tells TEAM
that the field may be used interchangeably with the thing of which it is the name
(normally a file subject}. An identifying number, such as a social-security number,
should be considered a name. In fact, any symbolic field that could be used as a
single-field key for the subject of the file should probably be inserted here.

e Quality is used as the parent for abstract nouns, such as volcaniam, that are
associated with a feature field.

e Feature becomes the parent of feature fields, such as peak-vol. The two categories of
objects - those that possess the feature and those that do not -- become disjoint
children of the file subject, along with any count nouns, such as volcano, defined for
the feature field.

Normally, the domain expert will add new sorts to the hierarchy as children of the "lowest"
or most specific nodes, but this is not always the case. For example, the noun empioyee might be
added as a subcategory of person in spite of the fact that the subcategories man, woman, and
child already exist. The designer would probably also make employee disjoint from child. In
general, it is good strategy to disjoin any nodes you can, since this may prevent TEAM from
making "bad guesses" when interpreting references to the domain concepts in the input sentence.

The designer must consider not only where to place new sorts in the generic hierarchy, but
how the new sorts will be related to one another. We have already seen that the relative position
of certain sorts can be important when verbs are defined. In fact, the domain designer may need
to introduce an extra node into the sort hierarchy as the parent of two related nodes that can
both be used with a verb. In the example discussed in the previous section, the {ocation node
already existed — but sometimes a new node must be created. We have also seen that equivalent
sorts result from the use of reference-field relationships. Whether to make two sorts equivalent is
a particularly significant decision, not only because of its linguistic consequences, but also because
an equivalence cannot be "undone." Before making such a decision, it is particularly important
to try the options out by creating small acquisitions that contain parts of the domain or by
building the experimental |levels of the domain “on top" of a saved (and therefore recoverable)
state.

56

5.8 Virtual Relations

A virtual relation is required in a domain when sentences from end users may depend on a
reference-field relationship between two files without mention of either the file subject or the
reference fleld. As noted earlier, the question "What peaks are contained in each country in
Asial” can be interpreted in the pkcont domain without a virtual relation, because country is
mentioned and peak-country acts as a reference to country. In contrast, the sentences "What is
the continent of each peak?" and "Show Asia’s highest volcano?" cannot be translated without
the virtual relation pkcont.

In essence, the virtual relation tells TEAM to recognize continent as a virtual property of a
peak. Because of this, the interface can interpret the phrases "the continent of a peak” and
“Asia's highest volcano." Furthermore, because of the schematic definition of the "links" and
“"join" involved in the virtual relation, the system can find the continent of a peak by matching
the appropriate value in the peak-country field to a value in worldc-name and then retrieving the
worldec-continent value. Because the continent field in the virtual relation is specifted in the QA
area as being a classifier of the subject of the virtual relation (which is peak), TEAM can also
recognize that the phrase "Asia's peaks” means those peaks that have continent " Asia," and use
the same retrieval strategy to find them.

The domain designer should examine each reference field in 2 new domain and decide
whether end users are likely to depend implicitly on the relationship between the two files. If one
ot more fields of one file may be considered virtual properties of the subject of the other file, a
virtual relationship should be created to capture this fact. (If there are no fields that would be
considered virtual properties, there is no reasonable way for a sentence to depend implicitly on
the relationship, or vice versa.) The subject of the virtual file should be the same as the file
subject that will gain the new properties. The fields of the virtual relation should correspond to
(1) the key field(s) of the "subject" file, and (2) the nonkey field(s) of the other file that should be
considered virtual properties of the subject of the first file. (Remember that key fields identify
the entities in subject files uniquely — this is why the key(s) is (are) included for the first file. No
key is needed for the other file, since the subject of that file does not participate in the virtual
relation.) For instance, in the pkeont virtual relation, the subject is peak, the pkeont-name field
corresponds to the key of the peak file, and pkcont-continent is the same as worldc-continent.

The virtual fields may have the same names as the actual fields or they may have different
ones, but each one must be made equivalent to its corresponding actual field in the sort
hierarchy. The questions in the QA area should be answered as they were for the actual fields,
with the exception of the field type question (for which "virtual” should be selected) and the two
questions about whether the field is a classifier of the file subject (for symbolic fields). As
illustrated in the example below, these two questions should be answered by considering whether
the virtual properties can be classifiers of the subject of the virtual file. Thus, the replies may be
different from simply stating whether or not the actual properties can be classifiers of the actual
file’s subject.

Let us suppose there is a file, gf, with subject geo-feature, that has key gf-td, a reference
field gf-class, and some other fields (see Figure 5-1). The field gf-class contains values from the
class-number field of a file that also has a descriptive field class-name. Since end users may use

a7

- R

phrases like "the name of each geo-feature," a virtual relation such as g fname should be defined,
with subject geo-feature and two flelds, perhaps called — for example — ¢ fname-id and
gfname-name. G fname-id must be equivalent to 7f-id in the sort hierarchy, and gfname-naume
must be equivalent to-cfagg-name. The figure shows the schematic definition of the links from
¢fname-id to g f-id and {rom ¢ fname-name to class-name; it also shows the join irom g¢f-class to
¢clagg-number. [t should be noted, however, that, as a reference field, gf-class must be equivalent
to the subject of the class file in the sort hierarchy, not to class-number. The sort hierarchy
represents the linguistic reality, whereas the links and join represent the database reality.

’ u | mbjecs
1 n oL samre
Fod g lda- I
L s
\i
cilamm mbject 3
} class
_ ...1::-3
: b |
o ;
gvr-imizre ‘
[+
o
m/\wm
inmn et sthar=sbe Shew
ML :h/ ﬁ-'.d/c!a-'lm-\dm
H-claen Glromrd Sl

Figure 5-1: Diagram and Partial Sort Hierarchy for a Sample Virtual Relation

As for the classifier questions, observe that ¢{ass-name is unlikely to be considered a
classifier of ¢lggs: the question "How many water tower classes are there?" doesn't make much
sense in this domain, since “water tower" is by definition a single class. Still, "How many water
tower geo-features are there!" is a sensible question, which indicates that gfname-name should be
considered a classifier of the subject of the virtual file. Similar reasoning holds for the implicit-
classifier question, which uses the test sentence "How many water towers are there?" Note that
these test sentences are the ones that would be shown in the extended explanation of the two
classifier questions if the domain designer gave "water tower” as the sample value for the

claga-name and ¢ fname-name fields.
a8

For those readers who are familiar with the “view" concept in database management, it
should be noted that a virtual relation is like a view in that it provides a shorthand for a join. A
virtual definition does not, however, have the "template® aspects of a view (although some
control over what is displayed can be exercised by marking convenient identifying fields). In
keeping with the fact that TEAM is an interface, not a database management system, virtual
relations are used to increase the range of sentences that can be processed by the system, whereas
views may be used for several other reasons, including data protection and preservation of old
data interfaces.

5.7 Editing Data Files and Testing a Set of Queries

Adding more than a few entries to a database file can be a tedious process. One way to
make this task easier is to use the TEAM data editor to put the first few entries into the file, and
then add the remaining entries by editing the LISP ".db" file directly with ZMACS or the
appropriate editor for the Lisp Machine on which TEAM is running. (Instructions for using
ZMACS are included in the Symbolics documentation.)

Using the EDIT command to add the first few entries will ensure that the *.db* file will
have the proper code structure. Figure 5-2 shows a sample ".db" file, with the field names and
database entries moved to separate lines for better visibility. Note that the field names are in
alphabetical order and that the data values in each entry are listed correspondingly. It is a good
idea to begin editing a ".db" file by formatting it as shown in the figure. First insert a "return”
character before each part of the code that should be on a separate line. Then position the cursor
at the left parenthesis before "CREATE.TABLE" and give the ZMACS command CTRL-META-
Q to indent the field names appropriately. Move the cursor to the left parenthesis before the first
"PUTPROP" and give the command again to format the database entries.

----- ¢~ MODE:Lisp; PACKARGE:DBB; BASE:iB.; -I-

{FID-NRME)
(FID-HUMBER))))

(DRYLRMD 175)

(|CONIFERQUS WOODLAND| 281)

(ICOHMRERCIAL BUILDING| 39)

(HOUSE 41}

)) (QUOTE TRBLEDATA})
(PUTPROP (QUOTE (FID-NAME)) {(OUOTE HIL) (QUOTE SPEC))
(PUTPRQP (OUOTE (FID-NUMBER)) {QUOTE HIL) (QUOTE SPEC))

(PUTPROP (QUOTE FID) (QUOTE ¢

Figure 5-2: A Database File, Formatted for Editing

New entries may be inserted anywhere in the list of existing entries. In the figure, for
example, a new entry such as "(APARTMENT/HOTEL 40)" could be inserted before the entry
"(DRYLAND 175)", after the entry “{HOUSE 41)", or between any two entries. For the sake of
clarity, each new entry should be put on a new line. In this example, it would also make sense to
reorder the entries in numeric sequence, since the numeric field is the key; this would make it
easier to keep track of new entries. Note that the order of the values within each entry should
not be changed, but the order of the entries themselves may be. Compound phrases must be

enclosed within two vertical bars, as shown in the example. (These bars indicate to LISP that the
characters between them should be treated as one literal atom.)

Once the file has been edited and saved, the new version must be reloaded before TEAM
will recognize the changes. Loading the domain will automatically cause the most recent version
of each database file to be loaded, as well as the acquisition file. A more efficient way of loading
an altered data file is to type (load 'data-file-pathname) to the Lisp Listener window (found
by using SELECT L), where “data-file-pathname" is replaced by a path name such as
* >teamdemo > peak.db”.

Another convenience is the ability to run through TEAM a group of test sentences that
have been put in a LISP file, directing the results to another file. The easiest way to begin a test
file is to use ZMACS to copy it from an existing one and edit the contents, as this ensures that
the file will have the proper mode and package; for example, " >teamdemo > userguide.questions"
is a test file that can be copied. As shown in Figure 5-3, each sentence in a test file is enclosed in
parentheses (to make it a LISP list) and "nil" is used to signal the end of the sentences to be
processed (which may or may not be the end of the file). In a query, a punctuation mark other
than a period or question mark must be preceded by a slash ("/"). A comment can be included
in the file by preceding it with a semicolon.

; —%- MODE: LISP; PACKARGE:DIAMOND; BRSE:1@. -2-

{uhat are the countries)

{show the peaks)

{(uhat 1s the height of each mountain {n nepal)

{shou the population of asiars's countries) jnote that # nust be placed before '
(uhich countries are nore populous than argentina)

{uhat 1s the largest country in asia)

(is the snallest country the least populous)

{uhat 1s the area covered by each country with a population more than 1880808)
(how high 13 the highast peak)

({s the area of Japan greater than 100880 square miles)}

{13 asia the continent of Japan)

{{s everest a volcana)

{uhich volcanic peaks are highar than 15080 feet)

(does k2 have volcanisn)

(can the highest pesk in north anerica erupt)

{shou the countries)

{uhat {s the area of kenya)

(uhat {3 the height of everest)

{uhat peaks sre contained in each country {in asia)

(does the least populous contry in esurope contain any volcanos)
(shou asia“’s highest volcang)

{vhat volcanes in north anerica are higher than every volcana in asia)
(is the highest peak {n europe)

{1s the highest peak {n europe volcanmic)

(how high 1s kenya)

(hou populous is kenya)

(shou the height of each peak in asis)}

{shou the he=ight of every peak in as{a)

(shou the height of all the peaks in asia)

(uhat ar=s is covered by Japan)

(Hhat 43 the continant of every peaks7)

mil

Figure 5-3: A File of Test Questions

60

Before running the test sentences through TEAM, make sure that the correct domain is
loaded and that the profile is set so as to produce the output you want to see in the resulting file.
Load the "tester" by typing (load ’>team >tester) in the Lisp Listener window. Then run
the tester by typing (test.team ’infile ’outfile}, where “infile" is the path name of the file of
sentences and "outfile” is the path name to be used for the output file. If an error occurs while
the tester is running, the error message and options for continuing will appear in the Lisp
Listener window. The output to the file will be similar to the output that normally appears in
the TEAM window, except that the actual answer from the database will be printed as a LISP
form rather than as a table.

61

Appendix A

Information From the Pkcont Domain

Menus

Appendix A

Information From the Pkcont Domain

=y 1q Menu

JPXCONT PERK HDRLOC

~ i [4]

PERKSCOBRTRY PEAK=HE IGHT PEAK-NANE PEAK-VOL
IPKCONT-CONTINENT PKCONT-NAME WORLOC-RRER WORLOC-CRPITAL

WORLDC-CONTINENT

WORLDC-NAME WORLDC-FOP

o -
HRER T CAPITAL (n) COMPACT (adj)
ICONTAIN (v) CONTINENT (n) COUNTRY (n
ICOVER tv) ERUPT (v} EXTENSIVE (ad))
{GOVERN (v) HEIGHT (n) HIGH (ad;)
{LARGE (ad)) LOFTY (ac)) LOM (ad;]
MOUNTRIN (n) N (n} HAME (n}
MATION (n? NONVOLCARIC (adj} PERK (n)

sword fNenu
POP nl
[SHORT (adj}
ISUPPORT (v)
WOL ind
WOLCAND (n)

POPULATION (n}
SHALL (ac))
TALL (ad))
VDLCANIC (ad;)
Y (n)

=T

POPULOUS (ac])
SOQURT (adj)
UNPDPULATED fady}
VOLCAKISHK (n)

Files and Fields

Luestion Hnskering Hreas
File name ~ WORLDC

iAglation’s status in the database - VIRTUAL ACTUAL

Database pathnams - >TEAMDEMO>WORLDC.DB

WHhat is this ratation about? ENTITIES RELATIONSHIPS
Subject = COUNTRY

Fields = NAME AREA POP CONTINENT CAPITAL

Primary kay 3at - NAME AREA POP CONTINENT CAPITAL
taentitying fialds - NAME AREA POP CONTINENT CAPITAL

Fronouns for fila subject = HE SHE IT THEY

uestion HnsHering Hrea
fField WORLOC -AREA is part of an ACTUAL relation.

;’rypa of tigid = SYMBOLIC ARITHMETIC FEATURE

Yalue typa - DATES MEASURES COUNTS

Are the upits implicit? YES NO

EEntnr impligit unit = SQUARE MILE

Measure type of this unit -~ TIME WEIGHT SPEED VOLUME LINEAR AREA WCORTH TEMPERATURE OTHER
Abbreviation for this unit? -~ SQ Ml

Conversion formula from SQUARE-METERS to (SQUARE MILES) - (/ X 2589998.)

fConversion farmula from (SQUARE MILES) to SQUARE-METERS - {* X 2589998.)

Positive adjectivas = LARGE EXTENSIVE

ENeguive adjectivas = SMALL CCMPACT

lGtuestion Hnswer ing fArea

fFiald WORLDG-CAPITAL is part af an ACTUAL ralatian.

Type of field - SYMBOLIC ARITHMETIC FEATURE

Edit lexicoh for words in this field? YES ND

‘Unknown' canvention for this fiald - *

'Not applicabla’ convention for this field - **

Arg fiatd values units of measure? YES NO

Database Nouns subcategory - PROPER COUNT MASS UNIT

Typical valug = PARIS

Will valugs of this fiald be usad as classifiers of the file subject? YES NO
Wil the vatues in this fiald be used aloha as implicit classitiers? YES NO

iluestion Hnswering Hrea
Field WORLOC-CONTINENT is part of an ACTUAL relation.

!Typa of field -~ SYMBOLIC ARITHMETIC FEATURE

£dit laxicon far words in this fiald? YES NO

‘Unknown' convention for this field - *

‘Not applicable' convention far this field - **

iAre field values units of measure? YES NO

Database Nouns subcategory - PADPER COUNT MASS UNIT

\Typical valua = ASIA

Will vaiugs ot this field be used as classifiers of the file subjact? YES NO
Iwitt the valuas in this fiald be used aione as implicit classifiars? YES NO

Huest ion HAnsWdering Hrea
Fiatd WORLDC-NAME is part of an ACTUAL ratation.

i Type of tield - SYMBOLIC ARITHMETIC FEATURE
Edit Jexicon for words in this fiald? YES NO

fauestion Hnswer ing Hrea
iField WORLDC~POP is part of an ACTUAL relation.

E‘rype of figld =~ SYMBOUC ARITHMETIC FEATURE
Valuye type = DATES MEASURES COUNTS

Typa of abjact countad - PERSON

JPositiva adjectives ~ POPULOUS

Erﬂngativn adjectivas = UNPOPULATED

liuestion Hnswer ing hrea

"Fie name = PEAK

BRelation's status in the database - VIRTUAL ACTUAL
FDaunase patnname - >TEAMDEMOYPEAKDE

Wnat is this relation about? ENTITIES RELATIONSHIPS
ESubjﬂc: « PEAK

IFields ~ NAME COUNTRY HEIGHT vOL

Primary xey s@T = NAME COUNTARY HEIGHT vOL
kidentitying fields ~ NAME COUNTRY HEIGHT vOL
kFronouns tor file subject ~ HE SHE IT THEY

lduestion HnswWer ing Hrea
PField PEAK =COUNTRY is part of an ACTUAL relation.

i Typa of field = SYMBOLIC ARITHMETIC FEATURE

Edit lexicon for words in this field? YES NO

'Unknown' convention for this fiald -

"Not applicable’ convantion for this fiald - ==

fAre figld values units of measura? YES NO

Datapase Nouns subcategory - PROPER COUNT MASS UNIT

Typical vaiue = NEPAL

Wili values of this fiald ba usad as classifiers of the fila subject? YES NO
kwili tne values in this field be used atone as implicit classifiars? YES NO

duestion FnswWering Hrea
'Fietd PEAK=HEIGHT is part of an ACTUAL refation.

IType of field =~ SYMBOLIC ARITHMETIC FEATURE

vaiue type - DATES MEASURES COUNTS

iAre the units implicit? YES NO

Enter implicit unit = FOOT

Measure type of this unit = TIME WEIGHY SPEED VOLUME LINEAR AREA WORTH TEMPERATURE OTHER
kAbDreviation for this unit? = FT

tConvarsion farmula from METERS to FEET - {/ X 0.3048)

Cenversion formula fram FEET to. METERS - (* X 0.3048)

IFositive adjectives - TALL HIGH LOFTY

fNegative adjectives - SHORT LOW SQUAT

ltuest ion FnswWwer ing Hrea
IFigtd PEAK-NAME is part of an ACTUAL ralation.

Eﬁrpe of figlz =~ SYMBOLIC ARITHMETIC FEATURE
i£dit lexicon for words in this fiald? YES NO
&

A-3

lGuestion fAnswering HArea

fFite name = PKCONT

Ralation's status in the database - VIRTUAL ACTUAL
what it this ralation about? ENTITIES RELATIONSHIPS
¥Subjact - PEAK

FFialgs - NAME CONTINENT

Primary xay sat = NAME CONTINENT

fidentitying figlds = NAME CONTINENT

fProncuns for fila subject - HE SHE IT THEY

lduestion HRnswering Area
Field PKCONT-CONTINENT is part of a VIRTUAL relation.

Typa of fiald - SYMBOLIC ARITHMETIC FEATURE

£dit lexicon for words in this field? YES NO

I"'Unknown' convantion for this fiald - *

'‘Not applicable’ convention for this fiald - **

Are fiald valuas units of measura? YES NO

Databasé Nouns supcataegory = PROPER COUNT MASS UNIT

Typical value = ASIA

Wili valuas of this figld ba ysag as classifiers of tha file subject? YES NOC
kWil tne valuas in this field ba used alonae as implicit ¢lassitiars? YES NO

fGuestion Answer ing Hres
Fielg PKCONT=-NAME is part of a VIRTUAL ratation.

Typa of fiald - SYMBOLIC ARITHMETIC FEATURE
Edit lexicon for words in this fiald? YES NO

Sample Words

lQuestion hnswering Hrea tuestion HnswWwering Hrea

Enter word -~ COUNTRY Enter word = POPULATION

Syntactic cateqory - ADJECTIVE NOUN VERB Synonym — POP

Fural = COUNTRIES Syntactic category - ADJECTIVE NOUN VERS
Noun subcategory - PROPEA COMMON ABSTRACT MASS JPural - POPULATIONS

!INoun subcategory = PROPER COMMON ABSTRACT MASS

liuestion knswer ing RArea fuestion Hnswering fArea

Entar worg = SHOAT Enter word ~ POPULCUS

tSyntactic category = ADJECTIVE NOUN VERE Syntactic cataegory - ADJECTIVE NOUN VERB
Comparativea ~ SHORTER Comparative = MCRE POPULOUS

FSuparmtivq - SHOATEST Suparlativa = MOST POPULOUS

GQuestion Hnswering Hrea
FEntar waord ~ CONTAIN

iSyntactic caragory - ADJECTIVE NOUN VER®

Third parson singular prasent tense (he she it) - CONTAINS

Past tense - CONTAINED

FPast participle = CONTAINED

Sentence - A COUNTRY CONTAINS A PEAK

I'A PEAK CONTAINE." <=2 ‘Somathing CONTAINS a PEAK' YES NO

"A COUNTRY CONTAINS. <=} ‘A COUNTRY CONTAINS something.' YES NO
‘A PEAK is CONTAINED.' <=} 'Something CONTAINS a PEAK.' YES NO

Guestion HnsHering Hrea

Enzer ward = COVEA

iSynmctic category - ADJECTIVE NOUN VERB

Third parson singular present tanse (he she it) - COVERS

'Past teanse ~ COVERED

IPast participie - COVERED

'Sentence — A COUNTRY COVERS AN AREA

'AN AREA COVERS. (> 'Something COVERS an AREA.' YES NO

i'A COUNTRY COVERS.' <= 'A COUNTRY COVERS somethihg.' YES NO
‘AN AREA is COVERED. <= 'Somaething COVERS an AREA. YES NO
i

Guestion HAnsWering Hrea
Entar word = ERUPT

iSyntactic catagory - ADJECTIVE NOUN VERB

Third parson singular present tense (he she it) = ERUPTS
Past tense ~ ERUFTED

iFast participle - ERUPTED

Sentence - A YOLCANO ERUPTS

l{Buestion HnswWering Area
[Entar word = GOVEAN

FSyntactic categary — ADJECTIVE NOUN VERB

fThird person singular presant tense (he she it) = GOVERNS

Past tense ~ GOVERNED

fPast partitipie = GOVERNED

Sentence - A CAFITAL GOVERNS A COUNTRY

‘A TOUNTAY GOVEANS. ¢=> *Somarthing GOVEANS a COUNTAY.' YES NO

I'A CAPITAL GOVERNE. (=) 'A CAFITAL GOVERNS somethinc.' YES NO

‘i‘A COUNTRY is GOVERNED.' ¢=> 'Something GOYEANS a COUNTAY.' YES NO

IGuestion FHnswer ing Hres
jEnter word = SUPPORT

?Synmctic tategory - ADJECTIVE NOUN VERB

{Third person singular prasent tensa (he sne it) = SUPPOATS

fFast tense - SUPPORTED

lFazt participle - SUPPORTED

ISentence - A COUNTRY SUPPORTS A PEAK

"4 PEAK SUPPORTS.’ <=> 'Somathing SUPPORTS a PEAK. YES NO

' COUNTRY SUPPORTS. ¢=> ‘A COUNTRY SUPPORTS something.' YES NO
A PEAK is SUPPORTED.' ¢=> "Something SUPPORTS a PEAK. YES NO

Portions of the Sort Hierarchy

THING
physical-object abstrget-object legal-person
ingnimata . living~creatore
pack
TRING
phyrical-odject abstract-ohfect legal-parsoa
- ~
avans {ocation tima realar other-abs mcgszra-enit legal-ads name quality Featore
peatcotntry worldecapitat et ont <ontinent
THING
pny:r'tﬂ-obj;ﬁ abstract-chfect fegal-parson
—
erent location time walar other-ads mezyare-mit lagat-abs name qaaltity Featsra
ot ide-nam eoriaama

A-8

